H D HARKEN
F/G 172

CE_INST OF TECH

2
:
g
=
&
:

]
5
g
2
3

N
%
A
M
w
Y
m
~
-~
-
o
@®
Q
W
o
(-1
w
-
[
-
w
w
<«

| 0 mlti%;’ e
== = &y
|t [
= i
Wiz s e

AD-A215 728

G ek LOEs

* DTIC

ELECTE
DECZ27.1989

i An Expert System for Automating Nuclear Strike Aircraft
- Replacement, Aircraft Beddown, and Logistics Movement
for The Theater Warfare Exercise

THESIS

Harold Dallas Harken III
Captain, USAF

AFIT/GCS/ENG/89D-7

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

89 12 26 157

Q

AFIT/GCS/ENG/89D-7

An Expert System for Automating Nuclear Strike Aircraft Replacement,
Aircraft Beddown, and Logistics Movement for

The Theater Warfare Exercise

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Harold Dallas Harken II1, B.S.

Captain, USAF

December, 1989

Approved for public release; distribution unlimited

“oseasion Tar
RTIS GRAXI

DTIC TAB 3

Unannounged 0 P

Justiftioation e .} /. h 0

Preface

The goal of this thesis was to determine a means for automating the planning section of
the Air University’s Theater Warfare Exercise (TWX). By delving into the areas of Artificial
Intelligence and Database Management Systems, this thesis presents a flexible, efficient, and

effective platform for realizir.g the above goal.

This thesis presents the requirements, analysis, and solutions for the realization of an
automated red player for TWX. I hope I have supplied a basis on which other thesis efforts in

this intriguing area of research might originate.

[am genuinely srateful to my thesis advisor, Major Mark Roth, for all these non-
committal looks he presented whenever he scanned my work. Basically a pessimist, I would
always try to find that little something extra which might turn that expression to perhaps a
small smile or maybe even a nod of approval. It was a mischievous way of keeping me on my
tres, but it worked. Thanks Mark. I also wish to thank the members of my thesis committee,
Dr. Thomas Hartrum and Licutenant Colonel Charles Bisbee for all the helpful insigﬁts they
contributed and for their grammatical expertise which I always seem to lack. Finally, I would
like to thank the people that I dearly missed during the time I spent struggling towards
graduation; my loving wife, Whitney, and our children, Ashley and Katy. Through all the
dance lessons, school picnics, and dinners at home that [missed, 1 am truly thankful that !
still received their support, understanding, and most of all their love. Girls, Disney World

here we come!

Harold Dallas Harken 111

By

| Distributions -

Avatlability Codes
—

v |

jAvatl and/or

Diat Special 1

\ ‘
!

.

Table of Contents

Page

Preface e e ii
Table of Contents e 1
List of Figures e vii
Abstract e e i
I. Introduction L 1
1.1 Background 1

1.2 Problem Statement 2

1.2.1 The Computer InterfaceTask. 3

1.2.2 A Consistent and Realistic Opponent. 3

1.2.3 A Platform for Evaluating Seminars. 5

1.3 Proposed Solutions 5

1.3.1 Automating the AAFCE Phase. 6

1.3.2 Automating thc ATAFPhase. 7

1.4 Assumptions 7

1.5 Approach/Methodology 8

1.6 Materials and Equipment S 11

1.7 Sequence of Presentation 11

il Literature Review o 13
2.1 Introduction 13

2.1.1 An Overview of Artificial Intelligence (AI). 13

2.1.2 A pBrief Overview of Database Systems. 16

2.2 Applications 18

it

Page

2.2.1 Semantic Networks for Database Management. 19

2.2.2 Knowledge-Bases. L. 24

2.2.3 ExpertSystems. 31

2.3 Summary-Where Do We Go From Here? 34

[1I. Evaluation and Selection of An Expert System Shell 37
3.1 Criteria for Selection 37

3.2 Portability 37

3.3 Data Representation 38

3.4 Developmental and Delivery Environments 490

3.5 Shell Features 42

3.5.1 Control Schemes., .. 42

3.5.2 Graphical Representation. 43

32.5.2 Why/How Explanation Facilities. 44

3.6 Cost . oL 45

3.7 Summary 46

IV, Replacement of Nuclear Strike Aircraft 47
4.1 Requirements 47

4.2 Analysis 47

4.2.1 Object-Oriented Design. 47

4.2.2 Rule Generation. 48

4.3 Solution 56

4.4 Summary 59

V. Aircraft Beddown L 60
5.1 Requirements 60

52 Analysis 61

0.2.1 Prioritization of Aircraft and Airbases. 61

5.2.2 Object-Oriented Design., 62

5.2.3 RuleGeneration. 63

5.3 Solution 70

54 Summary 72

VI, Logistics Movement 75
6.1 Analysis 76

5.1.1 Object-Oriented Design. 76

6.1.2 Rule Generation. 76

6.2 Solution 85

6.3 Summary 89

VII. Conclusions and Recommendations 90
7.1 Summary 90

7.2 Recommendations for Further Work 91

Appendiv A User’s Manual 93
Al Introduction 93

A.2 TWX Database Files and Operations 94

A.3 Nexpert Files and OperationsonthePC 96

A4 Summary 101

Appendix B. Programmer’s Manual 102
B.1 Introduction L 102

B.2 TheClass Editor 103

B.3 Rule Editor. 105

B.4 The Object Editor 112

B.5 The Context Editor 116

B.6 The Property Editor 117

B.7 The Forms Input Utility 119

v

Page

B.8 Summary 122
Bibliography 123
Vita . . 125

vi

Figure

1.

3]
L.

[}

=3

10.

11

12

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

List of Figures

TWX Organizational Chart for Blue and Red Players
The Turing Test for AT
A semantic net for “Helen offered Bill a solution.”
Relational Database Table

A semantic net for Companyl and Company2

WRT Mapping of Company2 and Part #7305 toaprice

Selection Operation
Union Operation
Intersection Operation
An Expert System
Global Planner vs. Intelligent Interoperability (7:639)
Nexpert Object Rule Structure oL
Nexpert Object Hierarchial Representation of Domain Information
Nexpert Object’s Knowledge Base/Relational Database Mapping
Purchase Costs for Nexpert Object
Required Red Nuclear Strike Aireraft
KB Classes for Automating Nuclear Strike Aircraft Replacement
KB Rule Relationships for Automating Nuclear Strike Aircraft Replacement . .
Decision Table for dataloaded
Decision Table for lowon_stkaac
Decision Table for rerole.atk from_same_baseall
Decision Table for rerole_atk from same.base.some
Decision Table for bring_atk.ac.fromaugaball
Decision Table for bring_atk.ac from augabsome

Classes for Automating Aircraft Beddown

Page

14

15

17

20

20

22

23

23

32

35

39

40

42

46

48

49

51

Figure Page
26. KB Rule Relationships for Automating Aircraft Beddown 65
27. Decision Table fordataloaded 66
28. Decision Table for looking forbest.ac 66
29, Decision Tabile for get_possiblesites 66
30. Decision Table for looking for_ best.base 67
31. Decision Table for move planes_tobase 68
32. Decision Table for moveall planesto base 68
33. Decision Table for move_some planestobase 69
34. Decision Table for check foronew_ac_needed 69
35. Decision Table for check_for_new_base_needed 69
36. Decision Table for move regiment_tobase 73
37. Decision Table for check for.all.bases_used 73
38. Classes for Automating Logistics Movement 77
39. RB Rule Relationships for Automating Logistics Movement 79
40. Decision Table ivr d~taloaded 80
41. Decision Table for current_baseset 80
42, Decision Table for add POL from supply base 81
43. Decision Table for add_?22?_from supply base_withover 82
44. Decision Table for add_??2??_from_supply base 82
45. Decision Table for looking for largest overage 82
46. Decision Table for overages_sent back 83
47. Decision Table for supply_base_updated 84
48. Decision Table for readv_for next base 84

viii

AFIT/GCS/ENG/89D-7

Abstract

The Theater War Exercise (TWX) is a five day, two sided, theater level, air-power
employment decision making exercise. The decisions required are typical of those that an air
component commander and staf” would make. TWX is a two-sided game where the blue team
is prayed by a student seminar and the red team is played by one or more dedicated Air Force

Wargaming Center personnel who attempt to provide a realistic red opponent.

Personnel at the Air Force Wargaming Center dctermined that too much time was
required for a red player to render an effective game. Also noted was the divergent
background of the red players made it difficult to play a normalized game during multiple
seminars. The goal of this thesis was to evaluate existing software programs, determine
which would best serve as a platform for automating the red player, design a system to that

effect, and implement it.

It was determined that an integration of artificial intelligence and relational database
management systems would provide a flexible, innovative, and cost-effective approach for
automation. Nexpert Object, an expert system shell by Neuron Data, was chosen as the

software platform.

An object-oriented approach was used to determine the necessary structures for au-
tomating the planning section of TWX. This included the replacement of nuclear strike
aircraft, the beddown of aircraft from an augmentation base, and the resolution of logistic

shortfalls at each airbase due to attrition and movement of aircraft.

The creation of three knowledge bases resulted from the design phase using application
prototyping, which facilitated the need for constant changes to the rules in order to present

a system that acted in accordance with the desire of the red players. This new series of

programs provided a means of lessening the red player’s time involved with simplistic, but
time-consuming work and allowed them to increase their time on the sections dealing with

target selection and prioritization.

An Expert System for Automating Nuclear Strike Aircraft Replacement,
Aircraft Beddown, and Logistics Movement for

The Theater Warfare Exercise

I. Introduction

1.1 Background

The Theater Warfare Exercise (TWX) is a five day, two sided, theater level, air-power
employment decision making exercise. The decisions required are typical of those that an air
component commander and staff would make. These decisions, once made by the exercise
participants, are fed into TWX’s air and iand battle simulation programs, which then simulate
the employment of the airpower strategy, doctrine, and warfighting principles inherent in
those decisions. TWXis a two-sided game where the blue team is played by a student seminar
and the red team is played by one or more dedicated Air Force Wargaming Ceater personnel

who attempt to provide a realistic red opponent,

The requirement for TWX o.iginated in 1976 when the USAF Chief of Staff directed the
development of “.. rigorous courses of study instructing operators and planners in the threat
and application of force” (25:1). To accomrplish this task, the Air War College conceptualized
a theater level, computer-assisted wargame that would serve as the capstone for its military

employment curriculum and meet the intent of the Chief of Staff’s direction (22).

TWX was originally programmed to run on a Honeywell H6000 mainframe cocmputer, but
was later rehosted to a Digital Equipment Corporation (DEC) Micro Vax IIT microcomputer
environment via the thecis endeavors of Captain Michael Brooks and Captain Mark Kross

6, 10). During this transition, TWX’s structure was totally renovated from a flat file system

to a more portable and flexible program using the Ingres Relational Database Management
System (RDBMS). Other thesis efforts continued to improve TWX by developing a new user
interface to replace the use of hard copy devices for all inputs and outputs (10, 26). A graphical
interface to the wargame was introduced last year through the work of Captain Darrell Quick
(16). Ongoing enhancemaents to TWX include porting the database to the Oracle RDBMS Jor

use on a SUN 3861 workstation.

TWX is now played extensively by the Air War College at the Air Force Wargaming
Center located at Maxwell AFB, AL. The Combined Air Warfare Course, the Guard/Reserve
Air Warfare Course, and the Contingency/Wartime Planning Course began utilizing the
resources of TWX in 1977. TWX was also incorporated into the curriculum of the Canadian
Forces Command and Staff College (1980) and the Royal Air Force Staff College (1983) as

well TWX s currently played over eighty times a year.

1.2 Proolem Statement

The problem that now confronts TWX is the lack of manpower to properly supervise the
overall exercise and thoroughly simulate the red player. Due to the overwhelming number of
seminars run concurrently, the personnel at the Air Force Wargaming Center do not have the
time to assimilate all the information given them for the next day’s play. Red team players
spend between five and eight hours a day inputting the next day’s assignments. Specifically,

the wargaming center has requested the following:

e Develop a system Lo free personnel from the computer interface task.

e Create a consistent and realistic opponent across all seminars.

e Provide a platform for evaluating seminars based on the strategies played by each blue

team.

1.2.1 The Computer Interface Task. The red team makes decisions at wtwo different
levels. It should be noted that the red team uses blue terminology to represent its command
structure, thus simplifying thc computer-veer interface. The first level of decision making is
that of the Commander, Allied Air Forces Central Europe (COMAAFCE), who with his “staff”
develops an air strategy to support the strategy of the theater commander, Commander in
Chief, Central Eu.ope (CINCENT), represented by the game director. The responsibilities
for AAFCE have been limited to logistics management, beddown of augmentation forces,

relocation of theater air forces, and rerolling of theater air forces.

The next level of decision making is at the Commander and staff of the Second and
Fourth Allied Tactical Air Forces (COMTWOATAF and COMFOURATAF). At this level,
players implement the Air Directives (ADs) passed down from the AAFCE commander and
make decisions to ensure optimum use of their limited assets in meeting COMAAFCE’s

priorities and specific objectives. Figure 1 presents the organizational chart used in TWX.

TWX is still paper-intensive, utilizing massive amounts of computer printouts and a
computer terminal to input user responses taken from hand-written worksheets. Players
must manually review and analyze numerous computer-generated reports in order to plan
their next day’s strategy. Fifty to eighty percent of the red team’s time is spent examining
these reports and filling in spaces on a complex set of worksheets to be entered into the

computer when all decisions have been made.

1.2.2 A Consistent and Realistic Opponent. There are currently twenty company grade
and field grade officers serving at the Air Force Wargaming Center as red opponents for TWX.
After being instructed by one o: the senior players, a new member is allowed to develop his
or her own strategy for successfully completing the five day seminar. This potentially allows
twenty different versions of the game to be played concurrently. Thus while one blue team is

thoroughly beaten, another might capture Moscow. There is a need for a consistent player

Central Region Command & Control

ACE
AFCENT

__ ,
: !
! .
! AAFCE '.
' :
: 1
]

| :
; .
\]
! 2ATAF 4ATAF |
[}

! :
e e e e e
y TTTT T TS ms S s s s 1

1

. TWX Player Roles !

VU U U .

AAFCE - Allied Air Forces, Central Europe
ATAF - Allied Tactical Air Forces

Figure 1. TWX Organizational Chart for Blue and Red Players

whose red strategy is based on known Soviet tactics and doctrine and is not biased by the

training and culture of the human opponent.

1.2.3 A Platform for Evaluating Seminars. At the end of a five day seminar, the red
teams report to the blue teams they played against. The blue teams are then briefed on how
well or how badly they played against their red opponent. Unfortunately, there is presently
no way to grade the blue teams against each other since they were not exposed to the same
red strategies. A platform that can evaluate blue strategies would help resolve this problem.
Given a blue strategy, numerous red game plans could be tested in order to find which
produced the best results. That plan could then be used against the blue team. Conversely,
multiple blue strategies could be played against the same red strategy and graded according
to how well they met their objectives. Students could then see which team was best prepared

to meet the red strategy presented.

1.3 Proposed Solutions

Automating the red player from simply a software point of view has many obstacles.

1. The are many solutions. It would take too long to examine each one.
2. The problem solving expertise is conceptual and cannot be reduced to “numbers”.

3. The information needed is incomplete, uncertain, subjective, inconsistent, and subject

to change.

4. The conclusion reached will often be uncertain.

|94

Experts may disagree on how to solve the problem.

6. The task is always changing and evolving (24).

Tho above problems tend to point out that a conventional software approach is not
advisable, but that a system built using artificial inieiligeace (Al) might be a better one.
Expert systems programs emulate the problem-solving processes of human experts through

the use of Al techniques.

The use of expert system shells requires that key knowledge concepts and problem
solving strategies are identified by one or more experts from the field. Red players from
the Air Force Wargaming Center were interviewed in December 1988, since they were
acknowledged as the known experts for planning and executing red strategy for TWX. From
their ideas, a basic requirement was derived. All players wanted to see the AAFCE phase of

TWX fully automated, but wanted the ATAF p'.ase only partially automated.

Due to the complexity of a database/expert system link the scope of the initial problems
was narrowed to meet the demand of the red players: fully automate the AAFCE phase of

TWX.

1.53.1 Automating the AAFCE Phase. The general order of events for AAFCE is to

o collect statistics from the computer-generated reports
e maintain the strike generation level

e move aircraft in from the staging base

e rerole certain aircraft (if desired)

¢ ensure enough logistics are present at the airfields to accomplish the mission (23:3.6).

Since the computer has instant access to all reports there is no need to externally
generate hardcopies. All information can be maintain within the system and called upon by
the expert system through an interface with the database. The following is a priority list,

ordered by Wargaming Center personnel, for automating the above procedures:

1. Autornate rerole of aircraft to maintain 15 strike aircraft per nuclear strike base.

2. Automate beddown of aircraft from staging base, taking into consideration: base damage,
shelters available, revetments available, type of aircraft already stationed on base, and

amount of available ramp space.

3. Automate resolving logistics shortfalls due to enemy attacks and aircraft arrivals.

It is the objective of this thesis to provide a vehicle for the red player experts to input

declarative goals and strategies that will achieve the requirements of the list above.

1.3.2 Automating the ATAF Phase. Targeting occurs during the ATAF planning portion
of TWX. Red players currently inake target selections from: a given priority list. After targets
are chosen, aircraft must be selected according to available types and missions needed to be
flown. Player time is constrained due to the numerous factors involved in making aircraft
selections. This results in not enough time being spent on following a realistic red strategy.
Meeting the following two objectives will greatly increase the time that can be utilized in

selecting proper targets and thus producing a more effective and realistic red opponent.

1. Allow the red player to select mission targets. Generate the necessary aircraft sor-
ties needed to assure a successful mission. This includes reconnaissance, defense

suppression, and electronic measures support.

2. Allow the red player to change aircraft selection when desired.

The realization of the above objectives has been assigned to a follow on thesis effort by

Captain Karl Kabanek.

1.4 Assumptions

The following assumptions were made concerning the work within this thesis:

The Air Force Wargaming Center is satisfied with the current structure of the database

which resulted from the rehosting work of the TWX system.

The Air Force Wargaming Center does not want a fully automated player for the TWX,
but requires a system that allows personnel to apply their time to more importants task

such as target selection.

The Air For.e Wargaming Center requires a system that is highly portable and flexible,

due to the :omputer hardware changes presently occurring at the center.

The decisions made by the new system must be readily verifiable.

1.5 Apprcich/Methodology

The approach taken for providing the above solutions is simply: learn the system,

analyze the requirements, design the new system, and implement the new system. In the

thesis proposal the following object'ves were identified:

e Learn how to play TWX. Determine how red strategy is realized by interviewing senior

red players at the Air Force Wargaming Center and observing and questioning the red
play.

o Evaluate existing Al expert system shells in order to find one that provides an interface
to TWX’s database, operates on the hardware platform that TWX is currently running,

and meets all functional requirements outlined by the first objective. An indepth

discussion on this objective can be found in chapter III.

e Design an autcmated red player with interjection by Air Force Wargaming Center
personnel at points determined by requests from the red players. The scope of the

design depends on the complexity of the rules needed to generate a realistic player

and the complcxity of implementing those rules. This will be further discussed in the

design-oriented chapters.
o Implement the design. This is encompasses testing and validation.

o Document the system with a user’s manual and system integrator’s handbook, containing
maintenance and installation procedures. These documents can be found in appendix A

and appendix B respectively.

During the literature review for this thesis, it was noted that only a general methodology
such as rapid prototyping, was advocated for designing a rule base system. Examination of
a previous thesis effort on the TWX user interface (26), showed that application prototyping
for software requirements analysis mapped very nicely into the methodology required for this
thesis. The following is a list of requisites for application prototyping and a brief explanation

why these assumptions are valid for this thesis.

1. All prerequisites are prespecified: Discussions with the Air Force Wargaming Center
provided general directions of what work needed to be accomplished. However detailed
requirements were not available. Also systems involving rule bases are never complete
when a requirement is first derived. Most rule bases evolve after hours of interviewing

experts and evaluating notes taken from those interviews.

2. Inherent communication gap: Communication of detailed requirements was hampered
by a lack of understanding by the user of the expert system shell’'s development system

and its capabilities.

3. Availability of tools for quick building: Both the Ingres’ and Oracle’s database develop-
ment systems and Nexpert Object’s Expert System Shell development system provide

the necessary tools for rapid prototyping. This is a must for knowledge based systems,

since a set of rules must be tested constantly to monitor how well those rules emulate a

human expert.

. Active system required: The resulting expert system will be interactive with TWX

operators.

. Rigorous approach is correct once requirements are known: Other more rigorous

approaches are applicable in different phases of the expert system development cycle,

such as functional decomposition and object-oriented design.

. Extensive iterations necessary: New problems and decision changes always arise when

working with more than one expert on designing one set of rules for an expert system

(4).

Determining the suitability of application prototyping for this thesis was based on

evaluation of a number of factors. The following is a list of the factors and descripticn of 2

type of system which is appropriate for application prototysing.

V]

. System Structure: Interactive and large amounts of database transaction processing.
. Logic Structure: Very structured components.

. User Characteristics: Uncertain about detailed requirements.

. Application Constraints: Development time available to perform iterations.

. Project Management: Confidence in the development system to perform application

prototyping.

. Project Environment: Prespecification difficult and capabilities unknown (4, 26).

Based on the above factors, the identified problems were good candidates for this

methodology.

10

1.6 Materials end Equipment

The equipment used for this thesis included one SUN 3861 Workstation, one Zenith
386 microcomputer, the Ingres RDBMS software package, the Oracle RDBMS software
package, the Nexpert Object Al software package, and other software development tools.
All equipment listed was provided by the Air Force Wargaming Center. Source code and
documentation from previous thesis efforts were instrumental in understanding the current

wargame implementation and integrating the new system.

1.7 Sequence of Presentation

Chapter Il is a detailed literature review of the current technology for integrating artifi-
cial intelligence and database management systems. This area of research was fundamental
in fulfilling the objectives of this thesis, since all data for TWX was stored in a relational
database and a necessary platform had to be found in order to integrate the database with an
Al development tool. Chapter I11 discusses the evaluation of Al expert system shells and the

criteria used to make a final sclection.

Chapters IV-VI detail the analysis, design, and solution to each problem presented in
this chapter: automating the 3 major components of the AAFCE phase. Each chapter begins

with an introduction of the actual task involved.

Next the problem is analyzcd using the software engineering principles for software
requirement analysis. The third section of these chapters discusses the solution to automating

each task. The discussion will include the software tools used and problems encountered.

The fourth and final section of each chapter will contain a summary and any recommen-

dations for further work in the area.

11

Chapter VII completes the thesis with an overall conclusion and recommendations for
further development of the artificial intelligence/relational database management system link

in the TWX system.

12

11, Literature Review

2.1 Introduction

The need for integrating Artificial Intelligence (AI) and database systems has been
evident since the two areas’ very beginnings. Both Al and database systems need to manage,
access, and reason about large amounts of possibly shared information (13:1). AI's overlap
with the database field is the knowledge-base which contains a system’s inferred knowledge
about a closed-world system. The key difference between knowledge-bases and other database
systems is the use of semantics. (See overview of Al below.) Databases can serve as the
virtual memory of an Al system, storing facts and reasoning states, while the knowledge-base
can contain rules and control the focus of attention. Database systems require a datahase
manager to provide an efficient and convenient interface between low-level data stored in
the database and the application programs and queries submitted to the system. The tasks
required of the database manager map well into the domain of AI where an Al system can be

used as means of performing reasoning, filtering, and other tasks dealing with queries.

The Theater Warfare Exercise involves the tracking and maintenance of numerous
aircraft as well as the bases within the theaters responsible for those aircraft. A relational
database was used as a storage facility for maintaining the structure of the data necessary
to conduct the computer exercize. A vehicle to automate portions of this exercise requires
the integration of database internals to their counterparts in an Al oriented program. This
chapter gives brief overviews of Al and database systems. It then discusses the terminology
and three applications that illustrate key areas of integration within the two fields. Future

research projects are suggested based upon research literature.

2.1.1 An Overview of Artificial Intelligence (AD). A generally accepted definition of Al

is as follows:

13

Person 2 Machine

Person 1

Figure 2. The Turing Test for Al

Artificial Intelligence is the part of computer science concerned with designing
intelligent computer systems, that is, systems that exhibit the characteristics
that we associate with intelligence in human behavior — understanding language,
learning, reasoning, solving problems, and so on. (2:3)
Another approach to Al was proposed by Alan Turing in 1951 (21). The now famous “Turing
Test” provides a means of measuring a machine’s intelligence by placing the machine and two
people in separate rooms. One of the persons will then present a question to the machine
and the other human being. If the person asking the question cannot distinguish between

the computer’s and the other person’s answer, then the machine is acknowledged as having

artificial intelligence. See Figure 2.

Inference 1s one of the major keys to Al It is the process of creating explicit representa-
tions of knowledge from imiplicit ones. Most cases involving Al assume that the knowledge
contained in their respective databases and any knowledge inferred by that data represents
all the known information ab»ut the system. This is a closed-world system. If the information
about a system does not exist in a database or it cannot be inferred then it simply does
not exist. This assumption can be quite disasterous when applied to the wrong kind of
problem. Therefore Al systems <uch as Rule Based Expert Systems must be limited to those

applications that can be mapped to a closed-world system.

14

\biect ‘/—a\

recipent

Bill

Figure 3. A semantic net for “Helen offered Bill a solution.”

A promising field in Al is semantic networks. Semantic networks were first developed to
represeiit the grammatic structure within sentences in terms of objects and their relationships.
This object oriented approach iz desirable since it is more efficient to represent each object
once and use cross-pointers rather than duplicate the object explicitly every time it is involved
within a relation. In theory semantic networks are as powerful as the predicates in predicate
calculus. Unfortunately the primary use of semantic networks is providing a graphical

depiction of knowledge and not an actual implementation.

A semantic network is a labeled direct graph where both nodes and edges may be labeled.
There are four types of nodes: concepts, events, characteristics, and vaiue-nodes. Concepts
are the essential parameters of a modeled world and relate to physical or abstract objects.
Events are used to represent actions within a world. Characteristics are used to represent
states or to modify concepts, events, or other characteristics. A characteristic is similar to
binary relation mapping nodes to which a characteristic may apply to a range of values that
a characteristic may take. Value nodes represent the values that characteristics may take.
Figure 3 shows a typical semantic net from (20:117). Other shortfalls concerning semantic
networks are that a standard does not exist and reasoning methods are not provided. A

database approach using semantics will be discussed in section 2.2.

Frames are another key structure in Al. A frame is a collection of knowledge relevant
to a particular object, situation, or concept. Generally there are many pieces io a frame and
many frames to a knowledge-base. A frame provides representation of an object in terms of
a set of attribute names and values for the attributes. A frame is somewhat analogous to a

“record” data type in PASCAL or ‘C'.

When surveying Al knowledge representations, relational databases are considered to
be highly efficient in handling data. Relational databases provide useful transformations
such as selection, projcction, and joins. These operations may be used in connection with more
powerful inference methods (such as resolution in predicate calculus) to attain a combination

of intelligence and efficiency in a knowledge-based system (20:124-127).

2.1.2 A Brief Overview of Database Systems. There are three classic models in the

database arena:

e The Hierarchial Model
e The Network Model

e The Relational Model

The hierarchial and network models are the elders and are tied more closely to the underlying
implementation of the database than is the relational model. These are a few reasons
why the relational model i1s ncw the fastest growing commercial model of databases. Over
300 relational DBMSs are now heing sold for virtually any type of hardware platform.
The relational database relies heavily on its management subfunctions for interaction with
its secondary storage, integrity cnforcement, security enforcement, backup, recovery, and

concurrency control.

The relational database consists of tables which represent a relationship among a set

of values. These values or attributes together represent a unique relationship within the

16

[Ship-Id | Ship-Name | Ship-Captain | No-of-Crew |

NCC-1701 | Enterprise Kirk 305
NCC-1704 | Constellation | Patrick 305
NCC-1706 | Intrepid Riley 325

Figure 4. Relational Database Table

database. These tables map very nicely into Al structures, facilitating the transfer of data
from a database to a program that can apply Al reasoning methods. A sample table is shown

in Figure 4.

Another aspect of relational databases that must be acknowledged is query languages.
These procedural or nonprocedural languages are the keys to a database’s internal structures,
allowing users to retrieve, modify, and store data. Structure Query Language (SQL) was
developed as a query language for System R (1). SQL consists of three major clauses: select,
from, and where. The select clause is used to list the attributes desired from the result of a
query. The from clause is a list of a relations to scanned during the execution of a query. The
where clauses is the selection criterion upon which the query applies itself. SQL or one of its
contemporaries today plays an important role in connecting an Al program such as an expert

system to a database.

There have been many proposals and implemented systems for coupling a logic pro-
gramming language (such as Prolog) with a relational database. These systems are broken

into two categories:

e Loosely-Coupled Systems

e Tightly-Coupled Systems

Loosely-coupled systems regard the external DBMS and the logic programming language
as communicating through an interface. For example a rule may be compiled into a relational

algebraic program defining a vicw. A goal in the logic program triggers retrievals from

17

the DBMS. In these loosely-coupled systems, the granularity and efficiency of the spanning
interface is crucial to performance. Loosely-coupled systems are comparable to what has been

successfully done with ‘C’ coupled to Ingres.

Tightly-coupled systems make little or no distinction between the logic programming
language and the DBMS. Two basic strategies have been advocated: either extending the
logic programming system to provide features such as security, data integrity, user sharing,
concurrency, and backup and recovery.; or extending the DBMS to handle logic variable,
structures, and deduction (14:108). However, both strategies have been found to be extremely

difficult and many companies have simply decided to build loosely-coupled systems.

2.2 Applicaticns

The number of applications integrating Al and database systems is rapidly growing.
Since 1975 the interaction between the two areas has broadened and become more systematic
(5:12). Numerous workshops, symposia, discussions, and survey papers have addressed the
need for more research into the combined fields. In 1983 a survey by Jonathan King published
in the SIGART newsletter listed over 30 research projects focusing on Al and database system
interaction. This chapter looks at three primary areas and their impact on the the two fields

they are bringing together.

Scction 2.2.1 discusses the work presented by Nicholas Roussopoulos and John Mylopou-
los at the first Very Large Databasce (VLD®B) Conference. The paper proposed using semantic
networks for conceptual descriptions of the contents of a database. It is one ofthe first research
endeavors to advocate the wholesale use of Al techniques in a database management system.
Section 2.2.2 explains the implementation of the knowledge-base, Krypton. An example is
provided to help illustrate how it works. Section 2.2.3 reviews the internal components of an

expert system and briefly discusscs a new expert system shell called NEXPERT Object.

18

2.2.1 Semantic Networks for Database Management. The usefulness of Database Man-
agement Systems (DBMSs) is severely restricted by their failure to take into account the

semantics of databases (17:112). Some of the more specific problems are listed below:

(1)What do attributes and relations mean? In order to use a relation or attribute a user

must know what they mean.

(2)How do we choose a relational schema for a particular database? The concept of
functional dependency is not adequate enough for expressing semantic relaticaships that

exist between items that make up a database.

(3)When do database operations make sense? There are many semantic pointers that
can be used to decide whether .1 not an operation makes sense. This expands operational

control beyond simple cost and security constraints.

{(4)How do we maintain database consistency? With the semantics of the database
excluded from the relational model the effect insertions, deletions, and updates have on
the database is only understood by the user in terms his/her subjective view of what the
information in the database means. Thus consistency becomes a subjective notion and this

can easily lead to its violation {17:134-136).

2.2.1.1 Semantic Network Integration. The best way to understand semantic
integration within a database system may be through an example. Assume two companies;
one company makes a part that 1s used by the other company. The following diagram shows a
semantic network depicting the above relationship. When describing certain characteristics
such as the price of a part, a “with-respect-to (wrt)” edge is used to show mappings from a
cross-product domain to a range. In order to provide a price for part #7305 this must be
mapped with a certain supply company since different companies have been know to market

goods at different prices. This mapping produces a value node. See Figure 6.

19

agent
Company?2 supply] Companyl

source L.
destination

object

Part #7305

Figure 5. A semantic net for Companyl and Company2

characteristic
Part #7305

object

Figure 6. WRT Mapping of Company2 and Part #7305 to a price

20

There are four types of characteristics, depending on the relation defined between the

domain and the range of the characteristic (ch - characteristic, v - value):

PERSON < ch= ADDRESS =v= ADDRESS.VALUE (Many-to-Many)

PHYSICAL.OBJECT <=ch=WEIGHT - WEIGHT.VALUE (Many-to-One)

PERSON — ch — POSSESSION =v= PHYSICAL.OBJECT (One-to-Many)

PART — ch — PART#—v — PART#VALUE (One-to-One)

Thus a person can have several addresses and at the same time several persons may have
the same address, each physical object has a unique weight but a weight cannot be associated
to a unique physical object, a physical object is possessed by a unique person, but a person
does not possess a unique object, and finally, a part has a unique part number and each part

number is associated to a unique part (17:115).

2.2.1.2 Semantic Operators. Semantic operators are operators that take as ar-
guments (operands) one or more nodes of a network and construct a new node or nodes
related semantically to those from whom it was obtained. Since sume nodes on the net
have associated relations or attributes of the database, a semantic operator may have a
corresponding database operation. It is important to stress, however, that the starting point
for the definition of operators is the semantic net and not the database. The following are
three semantic operators that have corresponding database operators. Exzamples are from

(17:128-132).

(1) Selection. The semantic operator of selection on a node n consists of creating a

new subnode “below” n which has more restricted properties than node n. For example, the

21

v :
% PART# PART#.VALUE
c

PART1
ch
A
WEIGHT * WEIGHT.VALUE
ch v
PART?2 WEIGHT WEIGHT,VALUE
argl / 101 Ibs
GT arg2

Figure 7. Selection Operation

expression ‘parts which have a weight greater than 101 lbs.” operates on node PART1 and

results in node PART2 of Figure 7.

(2) Union. Union operates on two nodes nl and n2 and result in the node nr which

e is “below” every node n that is “above” nl and n2
e is “above” nl and n2

¢ inherits all common characteristics and/or cases of nl1 and n2.

For example, ‘cases of supplying auto.parts.made.by.ford carried out by honest.ed or sears
with bad.boy as the destination’ operates on the two SUPPLY1 and SUPPLY2 nodes in Figure

8 and results in node SUPPLY3. (Note: a - agent, d - destination, o - object, and s - source)

(3) Intersection. Intersection operates on two nodes nl1 and n2 and results in a new node

nr which

e is “above” every node that is “below” n1 and n2

¢ is “below” n1 and n2

22

ad.boy
d
S

[
SUPPLIER SUPPLY3 AUTO.PARTS. MADE BY.FORD

auto.parts. made hy.ford

2,5 QS
sears SUPPLY2 honest.ed SUPrLYL
d d
bad.boy bad.boy
Figure 8. Union Operation
date.value
v
DATE
ch
a,s ch
PROJECT — ORD PA T3 P T4 POSSESS™ > SUPPLIER
/ QUANTIT QU TIT\
quantity.value quantity.value
Y
order > PART5 possess

Figure 9. Intersection Operation

e inherits all characteristics and/or cases of n1 and n2.

And the last example, ‘parts that have been ordered by some project and possessed by some

supplier’ operates on nodes PART3 and PART4 of Figure 9 and results in the new node PARTS5.

The description of the above semantic model is by no means complete. Research still
needs to be done in establishing that the association of relations to the basic building blocks of

the semantic net (concepts, events, and characteristics) is adequate, that the set of semantic

23

operators proposed is in fact sufficient, and that consistency, integrity, cost and security
constraints have been met. Where this model might fall short in accomplishing these goals,

it sets a very nice foundation for solving them in the near future.

2.2.2 Knowledge-Bases. Several database models allow the expressing of simple facts
such as “Smiti, has an acecount at the Centerville Branch.” However, we are not able to make

use of more complicated facts or rules such as:

o All accounts are either passbook saving accounts, checking accounts, or money market

accounts.
s Passbook saving accounts pay 5 percent interest.
e Checking accounts have a $5 per month fee.

¢ Checking accounts pay 5 percent interest if the monthly balance is over $1000; otherwise

they pay no interest.

* Money market accounts pay 8 percent interest if the balance is over $2500; otherwise

they pay 6 percent interest.

Rules such as these may be used for consistency constraint by transactions in the database,
but in general they are not used by the DBMS to speed up queries. In fact they may never

explicitly be defined within the database.

Consider the query “Find all money market accounts that pay 15 percent interest.” If
the system could use the fact that all money market accounts pay 8 percent interest, the
system could conclude that the answer to the query is the empty set without ever accessing

the database (9:474).

Rules are important since they can be used to answer queries that cannot be expressed

in standard database queries. In regular databases only information about facts can be

24

accessed and manipulated. The key to knowledge-bases is that they may be queried to obtain

meta-data or data about data.

2.2.2.1 Knowledge-Base Architecture. A knowledge-base (KB) consists of two

parts:

o A set of rules

e A collection of data or facts

The “collection of data” is actually a small database and like most databases it must have a
manag -ment system. Thus there is need for a knowledge-base management system (KBMS).
The KBMS’s primary goal is to “manage” the knowledge resources of a collection of KB
applications (e.g., all those of an organization). It also uses unified control schemes for
consistency, semantics, and knowledge content (ie. what knowledge resources the KBMS has)
as well as checks for redundancy, reliability, and security (12:37). The KBMS is assumed to

actively cooperate in the problem solving process.

Early KBs were sufficiently small to fit within a system’s main memory and performance
was not a main concern. However, the need for more sophisticated KBs has arisen in the
last few years. Many new requirements have been place upon KBs and their management

systems:

(1) Large Knowledge-Bases. KBMSs must acknowledge that they must deal with a large
amount of facts in order to model the real world. Also knowledge for individual components
cannot always be formulated concisely (e.g., a small set of rules). It is quite possible that a
KBMSs will have to manage more that one set of KB components. This would result in large

“central” KBs.

25

(2) Heterogeneous Knowledge-Bases. In typical DBMSs interfaces for multiple program-
ming languages, query languages, report writers, etc. are needed. KBs are being developed

to provide access to multiple-knowledge-representation languages and systems.

(3) Knowledge Sharing. Knowledge sharing is necessary for a query optimizer to plan

access strategy or prestage data the user is likely to ask for next.

(4) Multiple Data Types. Processing of normal formatted types as well as spatial data,
imagery, signals, etc. is now required by KBs. The KBMS must now handle different types
of processors and their associated storage devices to retrieve and store these complex data

types.

(5) Communication Between Components. There must be a flexible and efficient commu-

nication facility to allow the necessary flow of information between rules and data.

(6) Integrated I/ 0. Effective presentation is required of information by the system as a
whole. It may be necessary to present results from several KB components at the same time.

The above constraints can be related to input as well.

(7) System Modularity. A KB is naturally going to grow with the addition of new
components, data types, and processors. It is important that each new component not have to

contain excessive information on existing components.

(8) Self-Understanding. Most KBs are becoming large and complex. The system should
have the ability to explain the criteria for its decisions to the user in a manner that can be

easily understood.

(9) Parallelism. Several system components may need to execute in parallel. For
example, the processing of sensor data must take place in parallel, as well as the support for

queries and continuous displays necessary for the smooth operation of the system.

26

(10) Component Adaptability. Some components must be specialized for ovarticular
operations. However, general-purpose components that can be used in multiple environments

are more desirable.

Further discussion on the architecture of KBs can be found in (12).

2.2.2.2 Krypton-An Example Knowledge-Base. Krypton is a hybrid system with
two main components, one that specializes in assertional reasoning (the ABox), the other
in terminological reasoning (the TBox). Each component has its own language and its own
inferencing mechanism (3:294). The ABox language is first order predicate calculus, while
the TBox is a special purpose frame-based language of descriptions. The heart of Krypton is
the connection between the two components: predicates used in the ABox are actually defined
in the TBox. Thus all the analytic inferences computed by the frame-based TBox must be

available for consumption by in the logic-based ABox (11:23).

The language currently implemented in the TBox has two main categories: concepts
and roles, corresponding to one-place predicates and two-place predicates (binary relations)

respectively. These are inter-defined by the following BNF grammar:

{concept) = (1 - predicate — symbol)
| (ConGeneric {concept); ... {concept),)n >0
| (VRGeneric {concept){role)(concept))

{role} = (2 — predicate — symbol)

| {(RoleChain (role)y ... (role},) n > 1.

The ABox language is that of a function-free predicate calculus. The grammar is as

follows:

(wff) u= ({k— predicate — symbol) (var)y ...(var)s), k>0
| (NOT (wff))

| (OR (wff))

| (EXISTS (var) (wff)).

Note that one- and two-place predicates symbols are both terms of the TBox language

and components of the ABox language. To make this intersection explicit the following terms

are defined:
(T Box — symbol) ::= (1 — predicate — symbol) | (2 — predicate — symbol)
(ysymbol) = (k — predicate — symbol) k > 0
(gterm) = (gsymbol) | (concept) | (role)

So gterms, as they will be understood here, are either predicate symbols or composite TBox
expressions and each gterm has an associated arity (1 for concepts, 2 for roles, and k for each
k-place predicate symbol). One final definition describes the mapping of gsymbols to relations

of the same arity over the same domain.

Let D be any set. Let E be any function from gsymbols to relations over D such that E(s)

has the same arity as s. Then for any gterm e, the EXTENSION of e wrt E by
(1) The extension of any gsymbol s is E(s).

(2) the extension of (ConGeneric ¢} .. .¢;) is the intersection of the extensions of ¢;, and

Difkis 0.

28

{3) The extension of (VRGeneric ¢; r ¢2) is those elements x of the extension of ¢; such
that (x,y) is in the extension of r only when y is in the extension of :;. For example the
extension of (VRGeneric Person Child Doctor) would be the elements of x of the extension
of Person such that any y such that (x,y) is in the extensicn of Child is also in the extension
Doctor; that is, the above complex term stands for those persons whose children arce all

doctors.

(4) The extension of (RoleChain r; ... r;) is the relational coinposition of the extensions
of ri...r.. For example the extension of (RoleChain Child Child) is the set of all pairs (x,z)
such that for some y, {x,y) is in the extension: of Child and (y,z) is also in the extension of

Child; that is, the expression stands for the Grandchild relation.

To facilitate the above definitions an example is necessary. The following information is

known (ie. stored in the knowledge base):

e TBox Definitions:
Primitive Roles: Child
Primitive Concepts: Mammal, Thinker, Female
Define Concepts:
Person (ConGeneric Mammal, Thinker)
NoSon (VRGeneric Person Child Female)
o ABox Definitions:
Child(Fred, Pat)
Child(Mary, Sandy)

NoSon(Fred) v NoSon{Mary)

With the facts above, we should be able to show that there is somebody in our defined
world who is a Person and has a Child that is a Female, even though we don’t know who

that sorebody is. This query is formulated using predicate calculus as 3r-3y[Person(r) A
ry

29

Child(r. y) A Female(y)]. The intuition behind this proof is that if Fred and Mary both have
children then at least one of them is a NoSon, and whoever is the NoSon is himself/herself a
Person and has a child that is Female. That either Fred or Mary is a NoSon is insufficient,
since the definition of NoSon does not require that a person have a Child, but only that if

he/she has a Child, then that Child is a Female. The query above is proven true by refutation.

The proof by refutation proceeds by trying to derive a contradiction from the known facts
and the negation of the theory. Lines 1-3 are the known ABox facts that will be used in the

proof. Line 4 is the negation of the query.
1. Child(Fred, Pat)
2. Chiid(Mary, Sandy)
3. NoSon(Fred) v NoSon(Mary)
4. ~Pcrson(e) v ~Child(z,y) V ~Female{y)
5. =Person(Fred)v ~Female(Pat)
Normal resolution on 1 and ~Child(Fred, Pat) in 4.

6. =Person(Fredyv NoSon(Mary) V ~Child(Fred, Pat)
By 3, Fred is possibly a NoSon, which means that all his children are Female. Stating that
Pat is not Female in 5 has the consequence that Pat cannot be Fred’s Child. In other words,
NoSon(Fred) in 3 and —Female(Pat) in 5 resolve away and leave a residue of ~Child(Fred,
Pat).

7. ~Person(Fred)V NoSon(Mary)

Normal resolution on 1 and ~Child(Fred, Pat) in 6.

8. NoSon(Mary)
By the definition of NoSon, if Fred is a NoSon then he must also be a Person, so —-Person(Fred)

in 7 and NoSon(Fred) in 3 are directly contradictory.

30

9. ~Child(Mary,y) vV ~Female(y)
This time, if Mary is a NoSon, she must be a Person, so 8 and —Person(x) in 4 are directly

contradictory, with Mary being substituted for x in the resolver:t.

10. ~Child(Mary, y)
If Mary is a NoSon (as stated in 8), any children she might have must be female. Therefore if
there are no Females at all as stated in 9, then Mary must have no children. In the case the
residue, ~Child(Mary, y) was already part of the resolvent of 8 and 9, so it does not have to be

added again.

11. False.
The final result comes from the resolution of 10 and 2. As you can see it was the result needed

as stated above.

2.2.3 Expert Systems. An expert system attempts to emulate the reasoning of a human
expert in some knowledge domain. It does this by using facts stored in a database and rules
in a knowledge base. The rules are usually statements in logic and are expressed typically in
the form of an if-then predicate, such as if person1 is the son of person2 and person3 is the son
of person2 then personl is the brother of person3. Of course this assumes there have not been

any recent divorces in person2’s history. A typical expert system in illustrated in Figure 10.

A frequent application of expert systems is problem diagnosis. Given a set of symptoms,
the rules allow conclusions to be reached about the nature of the problem (9:475). MYCIN, a
medical expert system, allows doctors to use computers as advisors in diagnosis and treatment
of illnesses (18). The response an expert system gives to a user may be a question and not
a fact. For example MYCIN might ask for more information about a patient such that the
responses are likely to assist it in applying additional rules and thus obtaining a better

diagnosis.

31

Control Scheme

Condition Action Q

Condition Action Database of
e o State Information
O O
O O]

Condition Action

Rule or Knowledge Base

Figure 10. An Expert System

Most expert systems can find an answer to a query through the use of forward-chaining.
Forward-chaining applies a given set of rules to a database; when the “if” section of the rules
returns true, the “then” section is fired modifying the database accordingly. After all rules
that can be invoked are used, a control procedure checks for a goal state. If a goal state is
found it is returned to the user. The goal state for MYCIN would be a diagnosis to a set of
symptoms. Since an expert system finds answers to a query through forward-chaining, it can
explain how it reached a given conclusion by reasoning backwards. More generally it is a
list of the rules that were applied in order to reach the answer or goal state. This means an

expert system is nct only a query processor, but it is also a collaborator.

Expert systems today use external databases for the storage of facts. This requires
that the expert system submit queries in languages such as SQL and await an answer from

the database system. This implementation is used not for its efficiency, but for its ease of

32

use. It is not an optimal design since the rules in the knowledge base are not accessible for
processing by the database. Also in the likely case that the expert system poses a series of
related queries, the database system cannot take advantage of the similarity of the queries

and must process each one individually.

2.2.3.1 NEXPERT Object — An Expert System Shell. Neuron Data’s NEXPERT
Object is a classic expert system shell in that it hides the underlying source code and only asks
the builder to choose from the available options for inferencing methods, end-user interface,
and control schemes. The builder supplies the knowledge base through the shell’s interface
using the shell's format for objects and rules. NEXPERT Object was developed under the
premise that the domain expert should be the one directly operating on the shell without the
intermediary of a knowledge engineer. To that end, emphasis has been placed on ease of
use and understanding. A major asset of NEXPERT usually seen only on Lisp machines is
a display of rule and object networks. The object network browser allows users to examine
all the interelations between an object and the subobjects of which it is composed, as well
as the properties that it can possess. Likewise, the rule network browser allows you to see
every logical link between rules. The browsers are quite flexible and can display the networks

either deductively (as a backward chain) or evocatively (for contextual relationships) (19).

NEXPERT Object allows applications to communicate directly and dynamically during
the inference process with databases such as Oracle, Ingres, Informix, and DBASE III. Direct
interfaces to these databases is integrated into NEXPERT. Users can now relate information
in external databases and objects in a NEXPERT application. This is an example of a

loosely-coupled system.

There is also a runtime library that allows NEXPERT to use any outside programming
language to execute data manipulation. Its finest attribute is that the software created by the

expert system shell can be run on virtually any type of machine without having to be edited.

33

This means that a product created on a SUN workstation can be run on a DEC Vaxstation,

an IBM PC AT, or an IBM mainframe computer.

NEXPERT Object is used in solving a wide range of tasks such as: Classification,
Troubleshooting, Maintenance, Simulation, Design, Testing, Planning, Scheduling, Intelligent
Assistant, Data Structuring, Software Engineering, and many other applications. It is now
used in over 60 companies and universities in the United States and in 11 other countries. It

is one of the leading expert system shells available on the commercial market today.

2.3 Summary-Where Do We Go From Here?

Future computing will require the integration of many currently disjoint technologies,
including Al, databases, programming languages, operating systems, heterogeneous dis-
tributed systems, and communications (7:638). Al will be necessary for handling specialized
domains and for helping unique programs cooperate. Databases will be required to manage
and provide access to many different types of data including rules, programs, or any other

type of software object that might be created in the future.

The advance from DBMS to KBMS will probably be followed by the creation of the
OSiMS or Object Space Management System. Michael Brodie describes the OSMS as
managing shared objects on any system in an attached network. The key objective of the
OSMS is intelligent interoperability. Most computer systems today are disjoint such as
a database and knowledge-bhase or they use an ad hoc interface to communicate with each
other. With object-oriented approaches now becoming the main-stream methodologies of
engineering, there is hope that an encapsulation of systems might be possible, thus producing
general-purpose mechanisms or protocols for interoperability. The optimum use of such a
connection would require tasks such as resource planning, allocation, execution, monitoring,

and intervention between the two systems. This leads to the notion of a resource manager

34

(2

GP - Global Planner

a Intelligent
Interoperability

Figure 11. Global Planner vs. Intelligent Interoperability (7:639)

or global planner. The final step in intelligent interoperability would be to distribute the
global planner’s functions among all sharers of the network. Each user of the network would
have to apply to their resource manager who in turn would find the resources necessary for
execution, even if those resources were heterogeneous. Figure 11 shows the relationship
between a global planner and intelligent interoperability. This vision requires the extension
of database technology to general-purpose resource management and of Al technology to
support distributed cooperative work. The vision relies heavily on Al and database systems

integration.

35

This chapter has presented an overview of Artificial Intelligence and database systems
integration. It has given a brief overview of both Al and database systems terms. Semantic
networks and DBMS integration was discussed as well as the knowledge-base example,

Krypton. Finally expert systems were exemplified by the product NEXPERT Object.

36

II1. Evaluation and Selection of An Expert System Shell

3.1 Criteria for Selection

Before implementing any type of hardware/software combination, a best fit scenario
should be given serious consideration. Unfortunately in the real world, the criteria for
selecting that ideal combination is plagued with conflicts. Therefore the selection of a system
is determined by a series of compromises that facilitate those 1equirements which cannot be

modified or ignored.

The criteria for selecting an expert system shell for this thesis were the following:

1. Portability of the shell

2. Representation scheme available in the shell

3. Developmental and delivery environments of the shell
4. Features available in the shell

5. Total cost of the shell

Based upon the preceding criteria, Nexpert Object by the Neuron Data Corporation was
selected as the expert system shell to be used. The rest of this chapter examines in detail how

Nexpert Object met or exceeded the above criteria for selection.

3.2 Portability

Ideally, a software tool should be able to satisfactorily deliver an application across the
entire spectrum of hardware platforms utilized within the working environment. TWX is
currently running on IBM PC compatibles and a DEC Microvax III. Future versions will run
on SUN 3861 workstations. Each system has a different central processing unit (CPU) and

operating system to support the CPU. In order for an expert system shell to be effective in

37

automating portions of TWX, it has to be able to port to all three hardware platforms with

only minor changes at the user interface program level.

Nexpert Object is written in ‘C’. This makes it portable to a wide variety of machines,
including PC AT compatibles, DEC platforms running VMS or ULTRIX, SUN workstations
running BSD UNIX, and Apple computers like the Macintosh. The knowledge base created
by Nexpert Object is stored in an ASCII format thus allowing execution of the knowledge base

on a significantly different computer by simply transferring the file.

3.3 Data Representation

Three basic inference engine types are widely used today: induction, rule, and frame.
Out of the three, the rule-based system is easier to understand and therefore easier to
implement. Rule based tools use a treelike representation to create symbolic structures which
express deductive and ev ..ative progression in a reasoning path. The general format for a
rule is:

if...then...and do...

where if is followed by a set of conditions, then by a hypothesis or goal which becomes true
when the conditions are met, and do by a set of actions to be undertaken as a result of a

positive evaluation of the rule (15:2.7).

Rules are the structures wherein reasoning takes place on a representation of the
problem domain. This representation is made of interrelated objects. TWX consists of
numerous objects such as aircraft and airbases on which decisions are made in order to
maximize the number of fighter sorties generated. A expert system shell must be able to
represent these objects and categorize them in to classes according to their shared attributes

or properties. The following is a generic form for the hierarchial representation of information

38

IF..

conditions

l THEN...
—> [1“ hypothesis

and DO... actions

Figure 12. Nexpert Object Rule Structure

in a knowledge base:

OBJECT = Name ...Class(es)...SubObject(s) .. . Properties ... MetaSlots . . .

Nexpert Object is a hybrid system that supports both a rule-based reasoning system
and a powerful object-oriented representation scheme. Rules are divided into two parts,
the Left-Hand-Side (LHS) and the Right-Hand-Side (RHS). The LHS is where conditions
are expressed and the RHS contains the hypothesis and actions of the rule. (See Figure
12.) Nexpert uses a hierarchial representation of domain information. Classes, objects and
properties are the structures of that representation. Classes can store information relevant to
all their objects and the object can inherit this information when necessary. Classes provide
a way to look for objects meeting a specific condition in well-defined groups or clusters. This

mechanism is called pattern-matching. Consider the following condition:

Is < ATRCRAFT > .ac.name M23

39

PROPERTY1
PROPERTY2

OBJ 1 OBJ 2 OBJ 3 OBJ 4 OBJ 5

Figure 13. Nexpert Object Hierarchial Representation of Domain Information

This line translates into, “is there any airplane in the class ‘AIRCRAFT’ that has the
name ‘M23’. The brackets around AIRCRAFT denote a pattern-matching condition. The
conventional way to graphically represent classes and objects are with circles and triangles.
(See Figure 13.) All objects in CLASS1 have the properties, PROPERTY1 and PROPERTY?2.

This is an example of inheritance. Each object may have other properities.

3.4 Developmental and Delivery Environments

An expert system’s inference engine may well be highly effective and efficient, but if the
interface between the program and the user is not, the latter’s results are visibly weakened.
A shell must be able to present its output in a legible and understandable form. Entering
of rules, nbjects, and their relations must be straightfoward and allow for modification and
deletions. The delivery environment of a expert system shell is what a end user will see when
an application is interfaced to the completed knowledge base. Generally this is a textual
program that simply outputs the results of the inference process, but may produce graphs,

informational screens, or printed output.

40

Nexpert Object utilizes a dynamic windowing environment for its developmental system.
The actual user interface depends upon the computer system on which Nexpert resides.
Nexpert Object currently uses Microsoft Windows for its IBM PC versions and X Windows for
its SUN and DEC versions. The Knowledge Design Environment (KDE) for Nexpert consists
of interactive knowledge agents which enable the creation, edition, modification, and display

{(both textual and graphical) of knowledge and its structure.

The knowledge editors which constitute the KDE are the rule editor, the context editor,
the object editor, the class editor, and the property editor. Each tool is independent of the
other, and can be called at any time, allowing the system to immediately take into account
any modification to the knowledge base. Knowledge editors are accessed through menu bars,
pop-up menus, or control-key commands. No matter where the user is in the development

process, the KDE can be called up instantly (15:3.1).

Nexpert Object’s delivery environment is found within its Runtime Library. This
package allows the knowledge base to be accessed by external programs written in C, Pascal,
Fortran, or any other type of procedural language (Embedded Coding). A knowledge base
written on one machine can then be run on numerous hardware platforms different from the
one in which it was developed. Nexpert can also be linked to relational databases such as
Oracle and Ingres, via built in functions for database access. This is a key component in
today’s expert systems since intelligence requires perception and action. A knowledge-based
application must be able to connect with large amounts of data to be processed and updated.
Figure 14 shows how Nexpert Object links knowledge base objects and relational database

tuples.

This was a high priority consideration in selecting an expert system shell since TWX

data would be entered and modified directly from its database.

41

Attributes

Record [X]Y B

Table

Relational Database v

i t Properties
Object X

Y

Knowledge Base

Figure 14. Nexpert Object’'s Knowiedge Base/Relational Database Mapping

3.5 Shell Features

The way knowledge is expressed is a product of the type of shell used to represent the
knowledge and the features available in the shell. It is important that a shell provide as
many features as possible . These features make knowledge coding easier and provide greater
flexibility. The following subsections review the features that exemplify Nexpert Object’s
outstanding knowledge design environment. \

3.5.1 Control Schemes. The nonprocedural nature of knowledge-coding tools is both a
blessing and a curse. Without an internal control language, abstract control rule structures
must be used or control must be imposed via an external program. Nexpert Object allows for
the above controls, but has also provided a strategy mechanism that can be used globally or

on a rule-by-rule basis.

The most basic strategy modification is the control of action of effects. Whenever the

value of an object, property or hypothesis is modified, the knowledge base designer must decide

42

whether or not the system will propagate (investigate) the consequences of the modification.

Nexpert Object gives the following choices:

¢ PWF — propagate when false

PWT — propagate when true

PA — propagate anyway

PF — prcpagate forward

e EXH — exhaustive evaluation

The above strategies are boolean flags and their negations can be declared by preceding
the flags with the keyword not. PWT propagates the inference to the next contexts encountered
in the process only if the original hypothesis is true. PA propagates the inference no matter
what the original state of the hypothesis was. PF will forward any RHS actions consisting
in giving new or different values to data. EXH ensures that any backward chaining from a
given hypothesis is exhaustive, i.e. all the rules pointing to it will be evaluated whatever the

results of the previous rules.

Nexpert Object also allows d; namic modification of inheritance search routines and

inheritability strategies for objects and classes.

3.5.2 Graphical Representation. A picture can be a worth a 1000 words .. .if only you
can get the picture to the screen or printer. An expert system should be able to provide a
network diagram. A network diagram can be presented as either indented text or preferably,
a graphic picture. The diagram helps by showing the programmer or user an overview of the
structure and organization of the program’s logic. The ability to see a diagram of the decision
network helps you to identify missing fragments of logic and unnecessary duplication in the

logic (8:147).

43

Nexpert Object makes full use out of its dynamic windowing system to produce the
inspector program where selectivity and focus of attention are key mechanisms. The
inspector program can show a complete network diagram as a meshed graph of semantically
linked rules and data. The program can also localize investig ations, thus allowing users not
to lose their focus of attention. That is, the inspector restricts the area of interactions to a
group of rules leading to a given hypothesis (semantic restriction), or to a well-defined zone of
the knowledge network (spatial restriction). From this starting point, the restricted area is
expanded by the user. This mechanism of selecting a knowledge area, and then expanding it,

or working on it, is referred to as Navigation Investigation.

As the user’s focus of attention shrinks to a smaller number of relevant concepts to
investigate, he or she has the option to remove selected (either spatially or semantically)
parts of the knowledge nciwork from the display. Moreover the inspector program works
in either single-focus or multi-focus mode. In single-focus mode, only one investigation is
pursued. When the user re-focuses on a selected rule or data, the previous investigation
is removed from the display. In multiple-focus mode, the inspector program enables any
number of investigations to be concurrently performed and displayed. That is, whenever
a new knowledge island is created displayed for expansion, previous investigations are not

removed from the screen (15:5.1).

3.5.3 Why/How Explanation Facilities. It is important for a logic program to give
some explanation of its reasoning to the user of the program. When debugging a program,
there is often a need for detailed trace information which goes beyond the simple explanation
facilities for a single rule. The user may be interested in the overall flow of the logic (what

happened and when), not just the logic behind a single goal.

Nexpert supports three tracing utilities for the user. The transcript window provides

continuous tracking of the rules currently being used by the inference engine and the data

44

modified by the execution of those rules. The case study window displays a dynamic list
of data currently known to the system with their current values, as well as the confirmed
and rejected hypotheses. The final tool, cailed the full report window, provides the rationale
behind the utilization of each and every rule applied by the system to draw its conclusions.
There are also separate windows that show the current rule, the current hypothesis, and
current conclusions within a system. All the above windows can be output to a printer or sent

to a file for later editing.

3.6 Cost

Costs for knowledge systems are not very different from those of other, more conventional,
systems, PC-based tools range from $99 to $10,000 (1988), minicomputer tools (specialized
workstation tools fall into this category) from $1500 to $75,000, and mainframe tools from
$25,000 to $250,000 (8:144). Generally, minicomputer software is 10 times more expensive
than PC software. A higher price, however does not necessarily mean more functionality.
It is important to match a tool’s existing functions and cost to an application’s needs while
considering all the previous selection criteria before making a final decision. The bottom
line is to pick a system that delivers the functionality to complete a praject effectively and

efficiently.

Nexpert Object’s price tag was well below the maximum price indicated above and those
of its competition. If a major hardware change occurs a small update fee will be charged in
order to re-host the development system. The table in Figure 15 shows the approximate cost

of the system at time of purchase.

45

Item Description Retail Price (8) | Education Discount Price ($)
Development System 8,000 4,800
One Year Support 2,000 2,000
Database Bridge 1,200 720
Runtime Library 1,500 900
Shipping Costs 30 30
Total Cost 12,730 8,450

Figure 15. Purchase Costs for Nexpert Object
3.7 Summary

A number of expert system shells were evaluated with the above criteria, and all had
their advantages, such as speed or low cost, as well as their disadvantages, such as non-
portability or insufficient graphic representation. Nexpert Object was chosen because it best

fit the requirements for this thesis.

46

IV. Replacement of Nuclear Strike Aircraft

4.1 Requirements

The AAFCE portion of TWX is divided into three events. The first event that must
be completed is the replacement of nuclear strike aircraft at certain airbases (See Figure
16.) Executive directors require that each side must maintain aircraft capable of nuclear
strike missions at all times. Personnel, acting in the role of the theater commanders, must
generate reports showing the status of all bases within the red theater in order to locate
which strike bases are short the number of strike aircraft required. The officers must then
locate replacements for the aircraft that were destroyed. There are two means by which strike

aircraft can be replaced.
o Re-role attack aircraft of the same type that already exist at the strike base
e Move attack aircraft of the same type from the augmentation base and then re-role them

to strike capability.

Red experts desired a knowledge base that could decide whether or not to re-role aircraft
or move new aircraft in from the augmentation base. By creating the necessary objects and
rules associated with those objects, the replacement of nuclear strike aircraft could be fully

automated.

4.2 Analysis

Analysis for creating the knowledge base was broken into the object-oriented process for
developing classes and objects that allow data to flow between the knowledge base and the

TWX database, and the process for generating the necessary rules for the knowledge base.

4.2.1 Object-Oriented Design. Both the Nexpert expert system shell and the relational

database management system used by TWX provide an excellent platform for object-oriented

47

Strike Base | Aircraft Type | Number of Aircraft
23 U178 15
26 M27S 15
28 M238 15
43 M27S 15
46 U178 15
47 M27S 15
49 U178 15
58 U178 15
69 M27S 15
87 U178 15
92 M23S 15

Figure 16. Required Red Nuclear Strike Aircraft

design. Tables within the TWX database can easily be realized as classes within a knowledge

base.

The tables necessary for automating nuclear strike aircraft replacement were the
rd_ac-on_ab table, and the rd_strk_ac table. The rd_ac-on.ab table contains information on all
aircraft at each red airbase such as aircraft name, aircraft role, and number of aircraft. The
rd_ strk_ac table contains the required number of nuclear strike aircraft required at a given
base much like the table in Figure 16. Using the above tables, the knowledge base would
have full access to the number of actual strike aircraft on an airbase as well the number
required to be on base. Thus the knowledge base needed two classes in which to organize that
information. Accordingly, a class was created for trackii., the number of strike aircraft on
base and a class for tracking the number of attack aircraft for re-role purposes were created.
Since both of these classes would share properties such as airbase id’s, aircraft names, and
aircraft roles, it was easier to make them sub-classes of an airbase class and an aircraft class

and allow them to inherit the common properties. (See Figure 17.)

4.2.2 Rule Generation. It is much easier to graph out the conditions, actions, and

contexts of rules before actually writing them. Data flow diagrams, decision trees, and

48

ab_id

ac_.name
ac_role

airbase

req-quantity
act_quantity

atk_quantity

stk_ac_on._ab atk_ac.on.ab

ab23 ab46 ab87 ah92

Figure 17. KB Classes for Automating Nuclear Strike Aircraft Replacement

49

decision tables are quite useful when creating rules necessary for an application. Due to
the large number of conditions found in the later portions of the AAFCE phase and the
uncomplicated depiction of conditions and actions, decision tables were used to create and
display rules. Rules that do not share or directly modify data within other rules are called
knowledge islands. Knowledge islands can propagate or “fire” other rules that have been
placed in context with them. How rules are placed in context is explained in the solution
section of this chapter. A simple flow diagram will be used to illustrate the relationship

between rules, ie. their context.

Automating the replacement of nuclear strike aircraft requires the following:

1. Load the actual and required number of strike aircraft from the the database into the

knowledge base.

2. If the actual number of aircraft is less than the required number then re-role aircraft
of the same type stationed on the base or move in new aircraft for re-role from the

augmentation base.

3. Update all database tables involved, suct. as the rd_ac.on_ab table for the airbases with

strike aircraft and the augmentation base.

Figure 18 illustrates the flow of control needed for the above requirements. “F” in the
figure stands for a false result but may also be used when the result of the condition is

unknown such as at the start of the knowledge session. “I” depicts only true results.

The first rule in the knowledge base was created to read in the appropriate data from
the TWX database. In order to start a knowledge run, either a hypothesis must be suggested
or a data value volunteered. Since all hypotheses are unknown at start up, suggesting “data
is loaded” would force the machine to evaluate the state of the hypothesis by investigating

the conditions leading to that hypothesis. This is known as backward chaining. Rule number

50

IS

data loaded
?

load data

T
IS

‘{anm req.quant
?

F

ARE

planes avail from AUG base
07

ARE
planes avail for re-role

T T

move aircraft

re-role aircraft

y

DONE

Figure 18. KB Rule Relationships for Automating Nuclear Strike Aircraft Replacement

51

CONDITIONS HYPOTHESIS
READ in Actual Quantity data_loaded

READ in Required Quantity

FIRE next rule

ACTIONS

Figure 19. Decision Table for data loaded

one’s hypothesis was appropriately, data_loaded. The conditions for data_loaded required
that data concerning the actual and required number of strike aircraft be loaded in from the
database. If the hypothesis was false then an error was raised during a read from the TWX
database and the knowledge session would end. If the hypothesis was true then the next rule
in context with data loaded would be propagated. All airbases with strike aircraft would be
read into the class stk_ac.on_ab and identified by their airbase id number. Figure 19 shows a
decision table for rule number one. In the figure conditions are shown in the left-hand side of
the box. All conditions must be true in order for the hypothesis, found in the upper right-hand
corner, to be true. If the hypothesis is true then the actions found on the right-hand side of

the box are executed in sequential order.

Rule number two was responsible for deciding whether or not there were any airbases
that had fewer than the required number of strike aircraft. If the hypothesis was false then
the session was complete. If the result of the conditions was true, the bases that were low
on strike aircraft would be assigned to the new class, atk_ac_on_ab, which would allow the
number of attack aircraft at that base to be retrieved from the database. The attack aircraft
and the strike aircraft would be of the same type, ie. a M27-A and a M27-S are of the same
type. After the knowledge base read in the new data, the rule would fire the next set of

rules that would evaluate whether there were enough aircraft on base to handle the shortage

52

CONDITIONS HYPOTHESIS
Is act_quantity < req-quantity low_on_stk_ac

ADD to atk_ac_on_ab class
READ in Atk Quantity
FIRE next set of rules

ACTIONS

Figure 20. Decision Table for low_on_stk_ac

or would aircraft have to be moved from the augmentation base. The above hypothesis was

low_on_stk_ac. Figure 20 shows the decision table for rule number two.

To determine if attack aircraft stationed on a base could be re-roled to their strike
configuration, the knowledge base required two rules. Rule number three re-roled all attack
aircraft to strike aircraft if the number needed was greater than or equal to the number of
attack aircraft on base. The hypothesis for this rule was rerole_atk_ac_from _same_base_all. It
is possible to re-role all attack aircraft at an airbase since new atttack aircraft will be moved
in from the augmentation base as long as there is enough ramp space available and the base
is not too severly damaged. The fourth rule re-roled only & portion of the attack aircraft if
the needed number was less than the number of attack aircraft on base. The hypothesis for
this rule was rerole_atk_ac_from_same_base_some. The actions of both rules were the same. If
the hypothesis was true then the maximum number of attack aircraft needed were re-roled.
If the number of attack aircraft failed to replenish the required number of strike aircraft the
next set of rules would be fired in order to move aircraft in from the augmentation base. If
the required number of aircraft was provided then the knowledge session would reset these
two rules in order to check for shortages on other bases. Figures 21 and 22 show the decision

tables for rules three and four respectively.

53

CONDITIONS HYPOTHESIS
Is act_quantity < req_quantity rerole_atk_ac_from_same_base_all

Is atk_quantity < number needed

Is atk_quantity > 0 act_quantity < act-quantity+atk_quantity
atk_quantity <= 0

FIRE rules for moving in aircraft

ACTIONS

Figure 21. Decision Table for rerole_atk_from_same_base_all

CONDITIONS HYPOTHESIS
Is act_quantity < req-quantity rerole_atk_ac_from_same_base_some

Is atk_quantity > number needed

act_quantity < req-quantity

atk_quantity <

atk_quantity-number needed

FIRE rules to check next base

ACTIONS

Figure 22. Decision Table for rerole_atk_from_same_base_some

54

CONDITIONS

HYPOTHESIS

Is atk.quantity < number needed

bring_atk_ac_from_aug_ab_all

Is atk_quantity = 0

READ in quantity at augm. base

atk_quantity < aug_quantity

Is aug_quantity < number needed

aug_quantity < 0

Is aug_quantity > 0

RESET & FIRE rules for re-roling aircraft

ACTIONS

Figure 23. Decision Table for bring_atk_ac_from_aug.ab_all

CONDITIONS

HYPOTHESIS

Is atk_quantity < number needed

bring_atk_ac_from_aug_ab_some

Is atk_quantity = 0

READ in quantity at augm. base

atk_quantity < number needed

Is aug-quantity > number needed

aug_quantity «
aug-quantity-number needed

RESET & FIRE rules for re-roling aircraft

ACTIONS

Figure 24. Decision Table for bring_atk_ac_from_aug_ab_some

The last two rules were created in the same manner as rules three and four. Rule

number five moved all attack aircraft from the augmentation base if the number needed

exceeded or equaled the quantity of aircraft on station. Rule number six moved the required

number of aircraft if base supplies surpassed the needed amount. Again the action of these

rules were the same except for the actual number of aircraft to be move.

was found to be true then the rules necessary for re-roling the new aircraft were reset and

placed on the agenda to be evaluated. The names of the hypothesis for rule five and six were

bring atk.ac_from aug ab_all and bring.atk.ac_from_aug_ab_some respectively. The decision

tables for theses rules are in Figures 23 and 24.

55

If either rule

1.3 Solution

Nexpert Object allowed for easy implementation of the knowledge base’s classes and
rules. The actual link between the TWX database and the knowledge base was accomplished
using a combination of TWX database’s structured query language (SQL) and Nexpert’s
database bridge software. The rest of this section describes the unique problems found while

automating this portion of AAFCE planning and how they were solved.

The following SQL statement generated the required number of strike aircraft and the

bases at which they were stationed from the relational database.

select ab _id, ac _name, ac_role, quantity
from rd_strk_ac on_ab
The actual number of strike aircraft on station required the joining of the two tables,

rd.strk_acon.ab and rd_ac.on_ab. The following shows the SQL statement used:

select b.ab_id, b.ac_name, b.ac_role, b.quantity
from rd_strk_ac on_ab a, rd_ac_on_ab b

where a.ab id = b.ab_id

aid a.ac_name = b.ac_name

and b.ac_role = "3"

The same SQL statement as the one used to produce the actual number of strike aircraft
constrncted the actual number of attack aircraft on base, except the ac_role was changed

from “S” to “A”. The following SQL statement generated the number of attack aircraft at the

augmentation base: (Note: The augmentation base has an ab_id of 96.)

seiect a.ab_1d, a.ac_name, b.quantity
from rd_strk_ac_on_ab a, rd_ac_on_ab b

where p.ab _1d = 96
and a.ac_name = b.ac_name
and b.ac_role = "A"

56

The resulting data from the above SQL statements is loaded into the knowledge base

only when called for by a read instruction within a rule.

Nexpert Object’s context editor established the flow of control between rules. By placing
one hypothesis in context with another, the confirmation of the first hypothesis would place
the second hypothesis on the agenda to be investigated. When data Joaded is found to be true
it must .ire the rile responsible for locating strike bases with shortages. Thus low_on _stk_ac is
placed in context with data Joaded. The following is a summary of contexts for the hypotheses

within the knowledge base:

data_loaded:
low_on _stk_ac

low_on_stk_ac:
rerole _atk_ac from same base_all

rerole_atk_ac from_ same_ base some

rercle_atk_ac_from_same_base_some:
rerole_atk_ac_from same_basec_some

rerole_atk_ac_from same_base all:
bring atk_ac_from aug_ab_all

bring_atk_ac_from aug_ab some

bring_atk _ac_from aug ab_some:
rerole_atk_ac_from same basce_all

bring_atk ac from aug ab all:
rerole_atk_ac from same_base_all
The context between two rules can also be thought of as a calling mechanism. If
low_on_stk_ac is in context with data loaded then in theory, low on_stk_ac calls data loaded if
the hypothesis is found to be true. The strategy mechanism in Nexpert Object must be set to

“Forward Confirmed Hypothusis (PWT)” to facilitate the above actions.

The use of two temporary objects accomplished updating the TWX database. Res_temp

was created to update the strike and attack aircraft quantities after re-roling has taken place.

57

Aug_temp was created to update the augmentation and receiving base after aircraft were
transferred hetween them. Nexpert Object allows special attributes called an IF-CHANGE
slot for objects declared within the knowledge base. If a designated slot is changed during
a knowledge session, a set of actions, separate from the rules, can be executed. The above
objects contain a property called diff. When this property changes values, the TWX database
is updated and a screen is displayed to the user describing what action the knowledge base
has taken. A logfile is also updated so that a hardcopy of the knowledge base’s actions can be

recalled at a later time.

Variables used within the knowledge base are initialized using Nexpert’'s ORDER-OF-
SOURCES utility. When a rule needs the value of an unknown property, Nexpert examines
a table of prioritized sources where the value of the property might be found. If Nexpert
cannot locate a value it simply asks the user to enter one. Since the purpose of this effort
is to eliminate user interaction, we initialized all properties to zero or null using the INIT-
VALUE command within the utility. This command initialized the selected properties to their

suggested values upon start up of the knowledge session.

The knowledge session is started by using Nexpert’s FORMS-INPUT program. This
program allows a programmer to use speciaiized commands to create a screen-c.iented
interface to the knowledge base. Using FORMS-INPUT a introductory message is displayed,
explaining the purpose of the knowledge base. The program then prompts the user to click
on an icon marked “continue” which then loads the knowledge base, suggests the hypothesis,
data loaded, and starts the knowledge session. The program is then used to display actions
taken by the knowledge base until the session concludes. The user can then exit from Nexpert
and recall the results from a log fle or continue with other portions of the AAFCE phase of

TWX.

4.4 Summary

In the current version ¢f TWX, the red player is guaranteed to have enough replacement
aircraft at the augmentation base to handle any shortage discovered throughout the course
of the exercise. Thus, moving attack aircraft from the augmentation base should cover all
replacement requirements. A suggested enhancement might be to create additional rules for
the knowledge base to allos- for the event that the augmentation base cannot provide the
required number of attack aircraft. The rules would have to look for other airbases that did
not contain strike aircraft (a red player would not want to borrow from a base that might
need them later), but have the same type of aircraft in an attack configuration. The new
rules could then fire the original rules responsible for re-roling the attack aircraft. This would

make the knowledge base more adaptable and responsive to “real” world events.

Automating the replacement of nuclear strike aircraft using Nexpert Object was an
order of magnitude easier than trying to write a program in a procedural language such as ‘C’
or FORTRAN. After creating the classes and objects necessary for interfacing with the TWX
database, creating the flow control diagram and the rules’ decision tables, Nexpert Object
simplified the knowledge base construction by providing a dynamic and flexible interface for

entering the above information.

V. Aircraft Beddown

5.1 Requirements

The second event required for the successful completion of the AAFCE portion of TWX
is the bedding down of new aircraft from the augmentation base. For this milestone, TWX

players are required to:

o find the type, role, quantity, and ramp space needed for the aircraft scheduled for

relocation
¢ check on which bases the aircraft are allowed
¢ check which bases have the highest status
o check which bases have the highest number of shelters and revetments

e check which bases have the highest amount of ramp space available

Airbase status refers to the numerical value given to each airbase in order to determine
its present state of readiness. A base status has a range from zero to one, with one being the
highest. The numher of shelters and revetments are also determined for each airbase. The
only difference between shelters and revetments are that shelters provide better protection
for the aircraft. The above information comes from reports that are printed out each day of

the exercise.

Personnel at the Air Force Wargaming Center required a knowledge base to automate
the beddown of all aircraft moved from the augmentation base. The criteria for the knowledge

base was as follows:

1. Prioritize, according to player directives, the aircraft at the augmentation base for

relocation

60

2. Prioritize the airbases according to their status, number of shelters and revetments, and

ramp space available

3. Move aircraft only to airbases where they are allowed

5.2 Analysis

The analysis section is divided into three subsections. The first subsection concerns
the initial development for the airbase and aircraft prioritization schemes. The second
subsections contain the object-oriented design process for this knowledge base and the last

subsection reviews the rule generation process.

5.2.1 Prioritization of Aircraft and Airbases. Allowing a player to prioritize the acqui-
sition of aircraft from the augmentation base required a new attribute in the database table,
rd_aircraft. We named the attribute “merit” and gave it a range from 0 to 100, with the
highest merit equal to 100. Thus, a simple screen could be created, displaying the type, role,
number, and merit of the aircraft scheduled for relocation from the augmentation base. This
screen would permit the player to choose which aircraft would be moved first by assigning the
selected aircraft with the highest merit. The aircraft would then be transferred according to

their merit in descending order.

Prioritizing the airbases for aircraft relocation required an algorithm that would produce
a base merit derived from the base status, number of shelters, number of revetments, and
ramp space available. We determined that each variable in the algorithm would be mutually
exclusive. This meant that if an airbase had a status of 1.00 while another base had much
better shelters and more ramp space, then the airbase with the higner status would still be
chosen. The reason for this decision was that the key strategy to bedding down new aircraft
was to produce the maximum number of sorties that could be flown from each base. The

principal element in determining sortie generation was airbase status. Each of the other

61

elements for determining an airbase’s status were also given the same treatment with the

elements prioritized as follows:

1. Base status
2. Number of shelters
3. Number of revetments

4. Rampspace available

The resulting algorithm was as follows:

Revetments Rampspace

Merit = (Status « 10000 + 3) + (Shelters x 10 + 2) + (10 +1)+ 1000

The divisors/multipliers used remove the order of magnitude differences between the vari-
ables, while the addition operations within the parentheses order the variables according to
their priority. It should be noted that the above algorithm would have best been implemented
as a set of rules. However, this required the use of an “or” condition and the procedure for

implementing this condition in Nexpert would not produce the correct results.

5.2.2 Object-Oriented Design. Details needed by the knowledge base came from three
tables within the TWX database. Information dealing with aircraft name, role, merit, and
ramp space required by the plane came from the table, rd_aircraft. Data on what aircraft were
available for the aug -1entation base came from the rd.ac.on_ab table. The table rd_ac-al on.ab
contained data on which bases a specific type of aircraft could be stationed. The knowledge
base required two classes to store the above information. The class ac.on_augm_base contained
all data from the rd_acon_ab and rd_aircraft tables, and the class ac_.al_on_ab saved all data

from rd_ac.al.on.ab where the aircraft were those at the augmentation base. Both classes

62

ac_name ab.id
acrole airbase ab_status
merit num_rvmts
ramp_space num_shltrs

best_ac best_base

ac-on.
ac.al.on_ab

. augm_base
quantity

M27A M25D U24A98 M23D57

Figure 25. Classes for Automating Aircraft Beddown

were actually children of the two primary classes, airbase and aireraft, enabling them to

efficiently inherit common properties (See Figure 25.)

The objects “best_base” and “best_ac” are used to store the airbase and aircraft with the
highest merit. The objects in the class ac.on_augm_base are identified by the name and role
of the aircraft. ™\e objects in the class ac_.al on_ab are identified by the name and role of an

aircraft and the airbase id on which the aircraft may be stationed.

5.2.3 Rule Generation. The actual relocation of aircraft from the augmentation base

to their destinations required the following actions:

1. Load in data from the TWX database on the aircraft at the staging base.

2. Find the aircraft with the highest merit.

63

w

Find all airbases on which the aircraft may be stationed.

4. Find the airbase with the highest merit

5. Move as many aircraft to the airbase as allowed by available ramp space.
6. Get next best airbase as needed.

7. Get next best aircraft as needed.

Figure 26 illustrates the flow of control needed to resclve the above requirements.

We again used the hypothesis data Joaded to start the knowledge session. The successful
loading of all data concerning aircraft name, aircraft role, quantity, and ramp space used into
the class ac.on_augm_base resulted in data_loaded being true. The decision table for rule

number one is shown in Figure 27.

If the knowledge base was able to retrieve the needed material for the TWX database
then looking for_best_ac is placed on the system’s agenda and investigated. This rule examines
the merit of all aircraft within the ac_on.augm base class. Upon finding the aircraft with the
highest merit it places the name, role, merit, quantity, and ramp space needed in the object
“best_ac.” This rule is recursively used until it it cannot find an aircraft with a merit higher
than the one held by “best.ac.” The rule for determining possible sites to relocate the aircraft

pointed to by “best_ac” are then evaluated (See Figure 28.)

Once the aircraft with the highest merit is found then all possible relocation sites for
that aircraft are retrieved from the TWX database along with the base status, number of
shelters and revetments, and ramp space available at those bases. The hypothesis for this
rule is get_possible_sites. The airbases are placed in the class zc.alon_ab. If one or more
bases are found then the rule evaluates to true and the rule responsible for finding the base

with the highest merit is placed on the system agenda (See Figu-e 29.)

64

IS

load data data loaded

?

» T

HAVE

get ac with Higher Merit] ac with Highest Merit

?

-

LT

get airbases on
which ac can be
stationed

HAVE

get ab with Higher Merit 1 ab with Highest Merit

\
]

move aircraft

T
ANY

aircraft left

\

get next airbase

Figure 26. KB Rule Relationships for Automating Aircraft Beddown

65

CONDITIONS

HYPOTHESIS

READ in ac.name

data_loaded

READ in ac.role

READ in quantity

RESET and FIRE rule to locate best ac

READ in rampspace needed

READ in mernit

ACTIONS

Figure 27. Decision Table for data loaded

CONDITIONS

HYPOTHESIS

Is ac.merit > best_ac.merit

looking_for_best.ac

Is ac.quantity > 0

best.ac.ac_.name < ac.ac.name

best_ac.ac_role « ac.ac_role

best_ac.merit <= ac.merit

best_ac.rampspace < ac.rampspace

best-ac.quantity < ac.quantity

RESET and FIRE rule to get possible sites

ACTIONS

Figure 28. Decision Table for looking for_best_ac

CONDITIONS

HYPOTHESIS

READ in ab.id

get_possible_sites

READ in ab_status

READ in number of shelters

RESET and FIRE to locate best base

READ in number of revetments

READ in rampspace available

ACTIONS

Figure 29. Decision Table for get_possible_sites

66

CONDITIONS HYPOTHESIS
Is ab.merit > best_base.merit looking_for_best_base

Is ab.rampspace > 0

best_base.ab_id < ab.ab.d
best_base.ab_status « ab.ab_status

best_base.merit < ab.merit

best_base.rampspace < ab.rampspace

best_base.num_shltrs « ab.num_shltrs

best_base.num_rvmts <= ab.num_rvints
RESET and FIRE ac movement rule

ACTIONS
Figure 30. Decision Table for looking_for_best_base

The rule responsible for determining the airbase with the highest merit has the same
structure as the rule for finding the aircraft with the highest merit. All bases within
the acalon_ab class are reviewed and the base with the highest merit is placed in the
object “best_ab.” The algorithm developed in the prioritization subsection above was used to
formulate each airbase’s merit. The rule is recursively fired until the airbase with the highest
merit resides in “best_base.” The hypothesis for this rule is looking_for_best_base. When this
hypothesis evaluates to false the rules for relocating the aircraft are inspected. Figure 30

shows the decision table for this rule.

After the best airbase and aircraft have been established a rule is fired to calculate
the maximum number of aircraft that can be sent to that base. Move._planes_to_base places
this value in the object “max_num_of_ac.” This rule then pursues two other rules to decide
whether or not this amount can cover the total quantity of the aircraft at the augmentation

base. Figure 31 shows the decision table for move._planes_to_base.

The next two rules have the following hypotheses: moveall actobase and
move_some_ac to_base. If the quantity of aircraft that needs to ~elocated exceeds the number

that can be station on a particular airbase then only the number that the airbase can hold

67

CONDITIONS HYPOTHESIS
IS best_ac KNOWN move_planes_to_base
IS best_base KNOWN

CALCULATE max_num_of_ac
RESET and FIRE plane movement rules

ACTIONS
Figure 31. Decision Table for move_planes_to_base
CONDITIONS HYPOTHESIS
IS best_ac.quantity < max_num_of_ac move_all_ac_to base

best.ac.quantity < 0

best._base.rampspace <

best.base.rampspace-rampspace used

FIRE rule to get new ac

ACTIONS

Figure 32. Decision Table for move_all planes_to_base

will be move from the augmentation base. However, if the number of aircraft that can be
moved to a base is greater than the number awaiting relocation then all aircraft from the

augmentation base will be transferred. Both rules update the following database values:

e the quantity of aircraft existing at the augmentation base
o the quantity of aircraft existing at the receiving base

o the ramp space available at the receiving base

The decision tabtes for these rules can be seen in Figures 32 and 33.

The final two rules in the knowledge base determine whether to retrieve another airbase
for the current aircraft or acquire a new aircraft. If all planes of a specific name and role were
removed then the hypothesis check_for new_ac_needed would evaluate to true, effecting the
deletion of the object “best.ac” and the class ac_al on.base. This would allow the rules, used

previously, to again determine a new aircraft with the best merit and the bases available for

68

CONDITIONS HYPOTHESIS
IS best_ac.quantity > max_num-_of.ac move_some._ac_to_base

best_ac.quantity <
best_ac.quantity-max_num_of_ac

best_base.rampspace <

best_base.rampspace-rampspace used

FIRE rule to get new base

ACTIONS

Figure 33. Decision Table for move_some_planes_to_base

CONDITIONS HYPOTHESIS
IS best_ac.quantity = 0 check for_new_ac_needed

DELETE best_ac and ac_al_on_ab
RESET and FIRE rule to get new ac

ACTIONS

Figure 34. Decision Table for check_for_new_ac-needed

its beddown operations. If the quantity of “best_ac” has not been depleted then the hypothesis
check_for_new_base needed is true. This rule removes the object “best_base” and fires the rule
for determining a new base and also resets and fires those responsible for aircraft movement

(See Figures 34 and 35.)

The above sequence of rules continue to execute until either no planes exist at the

augmentation base or the maximum number of aircraft that can be transferred are moved.

CONDITIONS HYPOTHESIS
IS best_base.rampspace check _for_new_base_needed

< rampspace needed
IS best.ac.quantity - 0 DELETE best_base
RESET and FIRE rule to get new base

ACTIONS

Figure 35. Decision Table for check_for_new_base_needed

69

5.3 Solution

All data required by the knowledge base is retrieved through Nexpert’s database bridge
from the T'VX relational database. The following paragraphs present the SQL statements

necessary for obtaining the desire information in the needed format.

The name, role, merit, ramp space needed, and quantity of aircraft stationed at the
augmentation base are generated by joining the rd_aircraft and rd_ac.on_ab table within the

TWX database. The SQL statements necessary are:

select distinct b.ac_name,b.ac role,a.merit,b.quantity,
a.ramp_space

from rd_aircraft a, rd_ac on ab b

where a.ac_name = b.ac_name

and a.ac_role = b.ac_role

and b.ab_id = 96

order by merit DESC, ac_name, ac_role

Airbase number, 96, is the augmentation base. The objects are ordered by merit in
descending order. This creates a more efficient knowledge base since the first object read in

will have the highest merit and the rule responsible for finding the zircraft with the highest

merit will always choose the first object.

Information pertaining to the airbases on which an aircraft can be stationed is retrieved
by joining rd_ac.al on.ab, rd_airbase, rd_ac.on ab. The current version of the knowledge base
retrieves data for all aircraft at the augmentation base and then removes the unneeded bases.

The following is the SQL statements used for this operation:

select distinct a.ac_name+a.ac_rolet+ASCII(a.ab_id),
a.ac_name,a.ac_role,a.ab _id,b.ab_status,
b.num_shelters,b.num revet,b.ramp_ space

from rd_ac_al on_ab a, rd airbase b, rd_ac_on_ab ¢

where c.ab_id = 96

an-l a.ac_name = C.ac_name

and a.ac_role = c.ac_role

70

and a.ab_id = b.ab_id
order by «c_name,ac_role,ab_status DESC,num shelters DESC,
num_ revets DESC, ramp space DESC

The first line of the SQL statement creates an unique key for each object read in from
the database. The key is determined by the aircraft name, role, and by the airbase id. Again

all data is ordered in a way to make the knowledge base work more efficiently.

The rule control structure was created using Nexpert’s context editor. The strategy used
in this knowledge base was “propagate when true” (PWT). This means that rules in context
with a cuwrrent rule will not Le placed on the knowledge session’s agenda unless the current
rules evaluates to only true. Thus for the rule used in finding an object with the highest
merit, the rules are placed in context with themselves and with the rules needed to continue
with t'.e session. As long as the rules evaluate to true then they are still looking for an object
that has a higher merit than the current one. When the rules evaluate to false then the other
rules are allowed to execute. This strategy is accomplished threugh the use of an “inference
category.” If two rules are in context with another rule and the rule evaluates to true then
the next rule to be used is determined by which rule has the highest inference category. In
the case of the rule looking for the highest merit, recursion is produced by making the current
rule’s inference category higher than any of the other rules in context with it. Below are a list

of the hypotheses and their contexts. The number in parentheses is the inference categor.

data loaded:
looking best ac (3)
looking for pest_ac:
looking for best ac (2)
« - _possible sites (1)
get possible sites:
looking for best base (3)
locking for best base:
looking for best baze (3)
move planes _to base (1)
Tove planes to base:
move all ac to base (1)

~)
-

move_some_ac_to_base (2)
move_all ac to_base:

check_for new_ac needed (1)
move_some_ac_to base:

check_for new_base_needed (1)

Updates to the TWX database from the knowledge base are accomplished through the
use of the object “update.” By using the IF-CHANGE mechanism in Nexpert, whenever the
value of “update” is changed from false to true, aircraft quantities on the receiving base are
updated. A log file containing the destination ab_id, ac.name, ac_role, and quantity of aircraft

moved is also updated and a screen is displayed to the user describing the action taken.

The rules for finding the object with the highest merit must evaluate to true at least
once. This is accomplished by initializing the merits of “best_base™ and “best_ac” to -1. Thus
any aircraft or airbase with a merit greater than or equal to zero with ~ause to the rules to be
evaluated to true. The merit for each airbase is automatically calculated when asked for by
the knowledge session. Nexpert's ORDER-OF-SOURCES mechanism applies the algorithm
developed whenever the knowledge session detects a needed value that is unknown. This
allows the merit of the airbase to dynamically change during a session due to the number of

aircraft relocated to the base.

The FORMS-INPUT program in Nexpert again provided the necessary statements to
Ioad the knowledge base and start the session. It was also used to display the current status

of the session to the user.

54 Summary

One of the primary reasons for selecting a knowledge-based system instead of a pro
cedural language for autemating the AAFCE portion of TWX was the system's ability to
facihtate changes without a major modification. in coftware. After creating the above knowl

cdoe base, a suggestion was made to make the aircraft relocate in regiment-size flights of

CONDITIONS HYPOTHESIS
IS max_num_of.ac > 25 move_regiment._to base

IS best_ac.quantity > 25

best_base.rampspace <

L best_base.rampspace-rampspace used

best_ac.quantity <

best_ac.quantity-25*X
RESET and FIRE rule to get new base

ACTIONS

Figure 36. Decision Table for move_regiment_to_base

CONDITIONS HYPOTHESIS
HAVE all bases been used for check_for_all_bases_used

regimental moves

RESET and FIRE rules for regular
movement,

ACTIONS

Figure 37. Decision Table for check_for.all -bases_used

25 planes instead, moving as many planes to a base as possible. The only modifications to
the knowledge base were the addition of two rules and the placement of these rules within
the context of the established ones. The first new rule determines the number of flights
that a base can handle and move those flights to the receiving base. The hypothesis for
this rule is move regiment_to_base. The second rule is evaluated to true whenever all bases
within the class ac_.al_on_ab have been examined for moving regiment-size flights to them. If
aircraft still exist then the old aircraft movement rules are allowed to fire in order to move
as many planes as possible '~ bases with the highest merit. The hypothesis for this rule is

check_for_all bases used. The decision tabie for these rules can be seen in Figures 36 and 37.

The current knowledge base relies on the red plaver for selecting the merit of each
aircraft at the augmentation base. A future modification n.ijht be to generate the rules

necessary for calculating the merit of the aircraft according to a sct of criteria much like

the list used to produce the merit of each airbase. This would create a more complete and

independent knowledge base.

74

VI. Logistics Movement

The final event in the AAFCE phase is the movement of logistics from supply bases.
Each aireraft requires a specified amount of petroleum (POL), munitions, and spares (PMS)
to generate one sortie. Since it is possible for an aircraft to fly more than one sortie per day
then the maximum amount of PMS must be available on the base to maintain the aircraft’s
maximum number of sorties. Munitions for an aircraft are determined by the type of mission
it flies. Thus a base must be able to supply munitions for the mission that requires the highest

load. POL and spares remain the same for each mission.

Aircraft moved from the augmentation base are transferred to their new bases with only
two days worth of spares. All other supplies must be provided by the airbase. However, any
aircraft not moved from the augmentation base requires the use of existing base supplies,
including spare parts. If a shortfall occurs, the amount of PMS needed must be brought in
from the supply base. There are two supply bases available to the red player. The supply
base used is determined by the ATAF in which an airbase belongs. If the airbase is assigned
to 2ATAF then its supply base is PAF AD or base number 21. If the airbase is a member of

the 4ATAF then its supply base is PAF GA or base number 98.

PMS on each base must not exceed the base’s maximum tonnage limit. If the required
amount of supplies surpasses this limit, unessential supplies must be returned to the supply

base before the needed items can be received.

Red players using TWX called for a knowledge base that would automate the at

of logistics by:

e Finding the maximum mission loads required by all aircraft on each base
o Locating all base PMS shortfalls

e Transferring unessential material back to the supply base if necessary

~1
1]

¢ Moving the required amounts of PMS to each base

6.1 Analysis

6.1.1 Object-Oriented Design. Numerous tables within the TWX database were re-
quired for supplying the knowledge base with the necessary data for automating logistics
movement. Data on red PMS came from four different tables in the database. Weight
measurements on specific PMS items came from the table rd_pms. The airbase inventories of
PMS came from the table rd_pms_on._ab. The different types of munitions loads based upon
an aircraft type and its mission came from the table rd_std Ids. The amount of munitions

1equired by a specific mission came from the table rd_std_mun.

Other details such as the maximum tonnage limit for the base came from the table
rd_airbase. Finally the iable rd_ac_on_ab was used to provide the data for determining the

maximum PMS needed and the existing PMS tonnage for each base.

The knowledge base used three classes to store this data. The classes airbase and pms
were created as parents for the class pms_diff-on_ab. Rd_pms_diff-on_ab contains the airbase
id number and the difference between the actual amount of PMS and the needed amount of
PMS for each type of munitions, pol_diff, spr.diff, and aimi_diff, etc. The class also contains
the ataf number of the airbase and the existing and maximum tonnage at the base. The class
pms contains the name of each PMS item and its surface transportation weight. This class
is used in determining whether or not the base tonnage limit will be exceeded by the amount
of PMS required to cover all base shortfalls. Figure 38 shows the class structures and their

relationships to their objects in the knowledge base

6.1.2 Rule Generation. The movement of needed materials to meet base shortfalls as

well as the movement of overages required the following actions:

ab_id

ataf airbase

pms.name

pms_weight

max_tonnage

exist_tonnage

pol spares
aimi-diff
aimr_diff
atsm_diff
cbul_diff
cbu2_diff
gh_diff
gpl.diff
gp2_diff
pol diff
spr_diff ab23 ab24 ab26

pms_dif_on_ab

Figure 38. Classes for Automating Logistics Movement

71

1. Load in data concerning airbases and pms, eg. id’s, weights, etc.
2. Load in PMS differences for each base

3. Check for PMS shortfalls

4. Move overages to supply base as needed

5. Satisfy base shortages

6. Get next airbase as needed

Figure 39 presents the flow of rule control used by the knowledge base for the above actions.

The knowledge session is started by suggesting the hypothesis data_loaded. This rule
loads the classes pms.diff-on.ab and pms with data from the TWX database. A successful
loading of the knowledge base classes results in the contextual propagation of the next rule

(See Figure 40.)

Once the data has been loaded, the first base is set as the current base. The knowledge
base then retrieves the PMS difference values for the current base. These values, calculated
by the database, are the result of subtracting the needed supplies from the existing supplies.
A positive difference denotes an overage while a negative number marks a shortage. These
values are read for each base, resulting in a true evaluation of the hypothesis current_base_set

(See Figure 41.)

The true evaluation of current_base_set results in the firing of eleven different rules.
The first ten rules check for shortfalls in the ten types of PMS. All rules except for the rule
that examines the POL supply may fire other rules selected for moving cverages due to an
excessive amounts of supplies that inhibit the movement of needed items. There is no need for
POL overage movement rule since POL can be moved onto a base without increasing a base’s
supply tonnage. The final rule evaluates whether or not the current base has been absolved

of all shortfalls. Once all shortfalls have been removed, another base is evaluated until no

78

IS

load data data loaded

?

T
F HAVE
ab with PMS diff < 0
?

T

DOES
PMS needed exceed
base limit

T
DO
PMS ovevages exist
?

T

¥

!

N
7

/

move out overages

T

move in needed PMS

L_.T\
F ANY
DONE airbases left
?
T

get next airbase

Figure 39. RB Rule Relationships for Automating Logistics Movement

79

CONDITIONS HYPOTHESIS
READ in airbase info data_loaded

READ in PMS info

FIRE rule to add in PMS differences

ACTIONS

Figure 40. Decision Table for data_loaded

CONDITIONS HYPQTHESIS
IS airbase available current_base_set

LOAD PMS differences
RESET and FIRE rules to find shortfalls

ACTIONS

Figure 41. Decision Table for current_base_set

other bases are found. The rules for POL movement, munitions movement with or without

overages returned, and the next-base-selection rule are discussed in further detail below.

The hypothesis for POL shortfall evaluation is called add _pol_from _supply base. If the
POL difference is less than zero then this rule becomes true. The current airbase’s id and
quantity needed are then placed in a temporary object, dynamically named after the airbase
id no, eg. POL23. This information is used by the rule responsible for supply base updates.
Quantity needed is increased by ten percent which “pads” a base’s supply. This pad was
entered at the request of the red experts from the A’r Force Wargaming Center, due to the
random nature of attrition. Figure 42 shows the decision table for add_pol_from _supply _base.

This rule then fires the rule responsible for updating the TWX database.

All other rules, accountable for munitions and spares, must first check to make sure

the needed supplies do not surpass the airbase’s tonnage limit. If the munitions’ or spare’s

80

CONDITIONS HYPOTHESIS
IS current_base.pol diff < 0 add_pol_from_supply_base

CREATE OBJECT POLcurrent_base.ab_id
ADD 10% to quantity needed
RESET and FIRE rule to update

supply base

ACTIONS

Figure 42. Decision Table for add _POL _from supply_base

diff is less than zero and the maximum tonnage is exceeded by the needed supplies plus
ten percent then the hypothesis add_??2?2_from supply_base_with over becomes true. The
variable, ?7??, is used in place of the actual munitions being evaluated. The valid set
of munitions is AIMI, AIMR, ATSM, CBU1, CBU2, GB, GP1, GP2, and SPARES. If the
munitions being evaluated was a cluster bomb unit, type 2, then the hypothesis would be
add _cbu2_from _supply_base_with over. The tonnage over the airbase maximum is placed in
the object “tonnage_over_max” and the rule for selecting the largest overage at the current
base is placed on the system’s agenda. If there is enough room at the current base from
the incoming supplies then the hypothesis add_???2_from _supply_base is true and actions like
those of add pol from supply base are executed. Figures 43 and 44 show the generic decision

tables for the above rules.

The hypothesis looking for largest overage evaluates to true until the largest difference
muniticns on the current airbase is found. The PMS name, PMS weight, and difference
amount, are then assigned to the object “max_overage.” The rule for sending the overages

back to the correct supnly base is then fired (See Figure 45.)

The hypothesis overages_sent.back evaluates to true when the object “max_overage” is

defined. The rule is responsible for updating the current base’s existing tonnage after the

81

CONDITIONS

HYPOTHESIS

IS current_base.pol_diff < 0

add_from_supply_base_with_over

IS max tonnage < tonnage needed

RESET and FIRE rule to find

largest overage

Figure 43. Decision Table for add_????_from _supply_base with over

CONDITIONS

ACTIONS

HYPOTHESIS

IS current_base.pol diff < 0

add_????_from_supply_base

IS existing tonnage > 0

CREATE OBJECT ????current_base.ab_id

ADD 10% to quantity needed

UPDATE existing tonnage

RESET and FIRE rule to update
supply base

ACTIONS

Figure 44. Decision Table for add_222?_from supply _base

CONDITIONS

HYPOTHESIS

Is current_diff > 0

looking_for_largest_overage

Is current_diff > max_overage

max-overage.diff <= current_diff

max.-overage.name «— pms_name

max_overage.weight < pms_weight

RESE and FIRE rule to send

back overages

ACTIONS

Figure 45. Decision Table for looking for largest overage

CONDITIONS HYPOTHESIS
IS max_overage.name KNOWN overages_sent_back

UPDATE existing tonnage at current base
RESET and FIRE rule to update
supply base

ACTIONS

Figure 46. Decision Table for overages_seni_back

overages have been removed and firing ihe rules that update the supply base’s inventory (See

Figure 46.)

The rules responsible for updating the correct supply bases both point to the same
hypothesis supply _base updated. By having two rules point to the same hypothesis, an OR
condition is created with two separate sets of actions. In this case, if the current airbase is
part of the 2ATAF then supplies are sen’ to or retrieved from base 21. If the current base is a
member of the 4ATAF then supplies are sent to and retrieved from base 98. The advantage
of this OR condition allows both rules to be fired by propagating a single hypothesis. These
rules update their respective supply bases as well as the PMS totals for the gaining/losing
airbase. Once the database updates have taken place the ' #ledge session resets and fires
current_base_set. This allows the updated differences to be re-loaded from the TWX database.

The generic decision t¢ le for these rules is shown in Figure 47.

The last rule needed by the knowledge base designates the next airbase to be evaluated
once the current bases is found to have no differences. The current base is then deleted
from the class pms_diff-on_ab and the new airbase is selected. The hypothesis for this rule is

ready for next_base (See Figure 48.)

83

A

CONDITIONS

HYPOTHESIS

IS current_base.ataf = 2 OR 4

supply_base_updated

UPDATE supply base 21 OR 98

UPDATE supplies of current base

RESET and FIRE rule to check

current base

ACTIONS

Figure 47. Decision Table for supply _base_updated

CONDITIONS

HYPOTHESIS

Are ALL shortfalls removed

ready_for_next_base

DELETE current base

RESET and FIRE rule to set next

current base

ACTIONS

Figure 48. Decision Table for ready_for_next_base

84

6.2 Solution

Airbase information for the class pms_diff on.ab was generated by joining the tables
rd_airbase, rd_pms, and rd_pms_on_ab. Properties such as airbase id, ATAF number, and
maximum tonnage came from the table attributes of rd_airbase. Existing tonnage was
calculated by multiplying PMS surface weights from rd.pms with the airbase inventory of

PMS found in rd_pms.on_ab. The SQL statement used to generate this information is:

select a.ab id, max(a.ataf), max(a.max_tonnage),
sum(b.guantity*c.sur_weight)

from rd_airbase a, rd pms_on_ab b, rd _pms c

where a.ab_type =1

and a.ab_id = b.ab id

and b.pms_name = c.pms_name

group by a.ab id

The function max is used since the group by clause requires all properties within the
select clause to be either defined as one of its arguments or a function. Thus, max is used

Lo satisfy this requirement even though it never changes the value of the properties, ie. the

maximum ATAF number of those bases within the 2 ATAF is 2.

The class pms retrieved its data from the table rd_pms using the following SQL

statement:

select distinct pms_name, pus_weilght
from rd pms

where pms_name != "POL™
and pms_name != "OTHER"
and pms_name != "RX"
and pms_name '= "STDA"

order by pms_name

POLs weight is defined as zero when shipment is by surface vessels. Thus, it cost

nothing to transport. RX, STDA, and other are never used in the current version of TWX,

REPLACEMENT AIRCR. . (U) AIR FORC
WURIGNT-PATTERSON AFB ON
UNCLASSIFIED DEC 89 AFIT/GCS/ENG/89D-7

i - a2 Wiy
il

= u)

N

== mn '

22 [l |

==

so are not needed by the knowledge base. However, removing these four lines will allow the

supplies to be used whenever the need arises.

The SQL statements needed to retrieve POL and spare differences at each supply base

required data from the tables rd airbase, rd_acon_ab, rd_aircraft, and rd_pms.on_ab. The

amount of POL needed by an aircraft is based on the number sorties that can be flown by that

aircraft and a surge factor. The number of spares required by a aircraft is also dependent

upon the number of sorties flown. The next two SQL statement show how data was retrieved

from the TWX database for POL and spares respectively.

select

from

where
and
and
and
and
and

group

select

a.ab_id,

max (d.quantity) -
sum(b.guantity*c.sortie_rate*c.surge_factor*c.pol_sor)
rd _airbase a, rd_ac_on_ac b, rd aircraft ¢,
rd_pms_on_ab d

a.ab type =1

a.ab_id = b.ab_id
b.ac_name Cc.ac_name
b.ac_role = c.ac_role
d
d
a

o

.ab_id = a.ab_id
.pms_name = "POL"
.ab_id

a.ab_id,
max (d.quantity) -

sum{b.guantity*c.sortie_rate*c.srrg: factor*c.spares_sor)

from

where
and
and
and
and
and
group

rd airbase a, rd_ac_on_ac b, rd_aircraft c,
rd_pms_on_ab d

a.ab_type 1

a.ab_id = b.ab_id
b.ac_name c.ac_name
b.ac_role = c.ac_role
d
d
a

o

.ab_id = a.ab_id
.pms_name = "SPARES"
.ab_1id

PMS differences between existing and needed supplies were created by joining the

database tables rd_airbase, rd_ac on.ab, rd_std Ids, and rd_std_mun. The properties needed

for the separate munitions were stored in a database structure called a view. This structure

86

is used to define a “virtual table” within the database that can be merged with other SQL

statements to produce data which cannot be created with a single SQL statement. The SQL

code used to create the view was:

create view max_mun {(ab_id, ac_name, ac_role, mun_name,
quantity)
as select a.ab_id, a.ac_name, a.ac_role, d.mun_name,
max (d.quantit,) *max(a.quantity)
from rd ac_on_ab &, rd airbase b, rd std lds c,

rd_std mun d
where a.ab _id = b.ab_id
and b.ab type =1
and a.ac_name = C.ac_name
ard a.ac_role = c.ac_role

and c.pref load = d.load num
group by a.ab_id. a.ac_name, a.ac_role, d.mun name

This view called max_mun stores the amount of munitions needed for each plane on a
base. This amount is the maximum number obtained by checking the standard loads for every
mission an aircraft might be called upon to fly. The actual data used by the knowledge base
is determined by subtracting the amount in the max_mun view from the actual inventories
found in the table rd_pms_on_ab. The knowledge base must make eight separate queries in
order to retrieve the desired information on all eight munitions. The following SQL statement

shows a query for airbase shortfalls/cverages of general purpose bombs, type 1:

select m.ab_id, max(m.mun_name),

max (a.quantity) - sum{m.quantity)
from max_mun m, rd_pms_on_ab a
where m.mun_name = "GPl"

and a.pms_name = m.mun_name
and a.ab_id = m.ab id
group by m.ab id
The rule control strategy again was set to “propagate when true”, as described in the

last chapter. All contexts of a current rule were placed or the system’s agenda only if the

rule evaluated to true. Inference categories were use to make sure the rules responsible for
checking overages fired before those responsible for logistic movement to the ba.e. Below
are a list of hypotheses. Their inference categories are shown in parentheses if their are the

categories are greater the one (the default).

add_pol from_supply base:
supply_base_updated
add_spares_from_supply base:
supply base _updated
add_spares_from supply base with over:
looking for_largest_overage
add_????_from supply base:
supply base_ updated
add_????_ from_supply base with_over:
looking for_largest_overage
current base_ set:
add_pol from supply_ base
¢dd_sopares_from supply_ base
&dd spares_from_supply base with over(2)
add_????_from supply base
add_??7??_from supply base_with over(2)
ready_ for_next base(-1)
data_loaded:
current_base_set
looking for_largest overage:
looking for largest overage (3)
overages_sent_back
overages_sent_back:
supply_base_updated
ready for_next base:
current_base_set
supply base_updated:
current_base_set

"Jpdates to the TWX database again used the IF-CHANGE utility and the knowledge
base object “update”. After movement caiculations were performed, the object’s boolean value

was changed by a rule to true. This action initiated updates to the tables responsible for PMS

differences and the current base’s tonnage limit.

The w12 responsible for fnding the largest overage available must be evaluated to true

at least once in order to propagate the next rule after the largest overage is found. This again

88

required the initialization of object properties using the ORDER-OF-SOURCES mechanism.
With this program “max_overage.diff” was set to zero. This ensured a true evaluation of the

rule if there existed at least one positive difference, eg. an overage.

The initiation of the knowledge session was implemented using the FORMS-INPUT
program in Nexpert. After loading the knowledge base, the program suggested data_loaded,

which launched the knowledge process.

6.3 Summary

The current version of the logistics knowledge base reiies ¢n the TWX constraint that
all shortfalls can be alleviated. This, however, is not always the case in the real world.
A suggested enhancement might be to ailow PMS transfers from bases other than the
supply base that have overages or might not be capable of generating aircraft sorties due
to substantial damage. This would improve the knowledge base’s emulation of actual battle

scenarios and release it from the TWX environment.

89

VII. Conclusions aind Recommendations

7.1 Summary

The main focus of this research was providing a means of automating the AAFCE phase
of the Theater Warfare Exercise. By utilizing an AI expert system shell, the goals as stated
in the introduction chapter of this thesis were realized. Three knowledge bases were created
through the use of the Nexpert Object development environment. Each knowledge base,
independent of the others, fulfilled the requirement as set forth by the personnel at the Air

Force Wargaming Center.

The actual automation of the planning section of the Theater Warfare Exercise could
have been realized through the use of a procedural language and not a rule based expert
system. However, this research was cited as the first of many with the final goal of totally
automating the red side of TWX. The automation of target and aircraft selection, along with
actual strategy evaluation would have been severly restricted if the only developmental tool
used was a simple programming language. This research’s largest contribution was finding
a flexible developmental platform for the work ahead and creating a design model and its

methodelogies that will facilitate the development process for those who follow.

The knowledge base for the automation of nuclear strike aircraft replacement maintains
a very simple, but effective, heuristic for sustaining the desired number of aircraft at their
designated bases. The addition of this knowledge base will provide the red player with an

extra fifteen to thirty minutes of time that can be devoted to the ATAF phase of TWX.

The knowledge base responsible for aircraft beddown increases the amount of extra time
that can be utilized by the red player by a minimum of one hour. This represents a decrease

in AAFCE planning of over twenty percent.

90

The logistics movement knowledge base removes the most mechanical section of the
AAFCE phase. The red player, now, does not have to waste thirty minutes to an hour on a
section that requires no more strategy that the ability to add and subtract, but is none the

less a time consuming facet of the AAFCE phase.

The ability to execute three programs that complete their necessary functions within
minutes after ey have been initiated is a great improvement over the two to three hours of
work spent looking at numerous reports, worksheets, and computer displays. The freedom
from these tedious tasks will permit the red players to provide a higher quality cvercise since

a significant amount of their time will now be spent on target selection and prioritization.

7.2 Recommendations for Further Work

This thesis only completes the first step in automating the red player tor TWX. Now
that a developmental environment has been evaiuated and a functioning application has been
produced, the ATAF section of TWX should be automated. The selection of aircraft for a given
mission and later the selection of the actual mission should be considered as the next two

levels of automation within TWX

Nexpert Object provides numerous means by which an e:pert system shell can be
executed. With the transition of the TWX database from the Ingres RDBMS to the Oracle
RDBMS, the opportunity for creating a new platform for developing, generating, and operating
new expert shells is available. Using the relational database’s Applications-By-Forms tools
and embedded code might provide a standardized means of utilizing an expert shell within

TWX.

Finzally, the area of exercise evaluation and comparison should be addressed with the
use of expert system shells. Using a fully automated version of TWX with the same red

strategies should allow red players to evaluate games played by different student seminars,

91

thus providing a means to determine which student team was the best. A second application
of this type of system iniglit be to automate the blue side of TWX and judge the merit of

different red strategies. This would render a more effective and flexible lesson to the blue

teams.

92

Appendix A. User’s Manual

A.1 Introduction

The software for this thesis was originally slated for use on a DEC GPX workstation
networked to a Microvax IIT which hosted the Ingres RDBMS version of TWX. However, the
personnel at the Air Force Wargamming Center received some new equipment; specifically
Sun 3861 workstations. The decision to transfer TWX to the Sun’s became a little more
difficult when it was determined that the workstations would use the Oracle RDBMS instead
of Ingres. This required a compiete makeover of the TWX database and a revision in the
Nexpert Object software order. Nexpert was originally to be hosted on the GPX workstation
under the VMS operating system, but the Sun’s are a Unix machine. Luckily, one of the many
facets of Nexpert was that it runs on several machines, and the Suns happened to be one
of those platforms. HOWEVER, the Oracle and Nexpert software never arrived before this

thesis was completed.

Thug, this thesis was based on the IBM AT version of Nexpert with all database
communications simulated using Nexpert’s database base format (see the programmer’s
manual for more infermation.) The SQL statemcnts developed by this thesis were fed to the
TWX database on the DEC Microvax III. The results were stored in files and downloaded to a
Zenith 386 PC. The database files were then formatted into Nexpert's database structure and

use by the knowledge bases.

The rest of this manual is broken into two sections. The first section deals with where
to find the SQL statements used to create the data files needed by the knowledge bases and
how they were created. The second section deals with how Nexpert was implemented on the

microcomputer and where to locate the numerous files needed to run the knowledge bases.

It should be noted that while the three knowledge bases created by this thesis are only

simulations, the rules used to generate the sessions are correct and will only need a small

93

amount of changing when they are uploaded to the Sun 386i. The only reason that these
sessions are considered simulations is that the data used by the knowledge bases is not

dynamically retrieved from and saved in the actual TWX database.

A2 TWX Database Files and Operations

All data files used by Nexpert were generated using the Tngres Interactive SQL program
(ISQL) on a DEC Microvax Iil. The Microvax which hosts the TWX database is called RAVEN.
A seminar was created from the TWX master database, TWXMSTR. The seminar number
used for this thesis was 3. A seminar is created by using the TWX database control menus.

The TWX controller is executed by entering the following command:
twxcom

Entering option 1, “Create a new seminar database”, produces a prompt asking for the
seminar number. This command creates the scminzar by creating the database, TWX3, where
the seminar number chosen was 3. All SQL statements are then applied to TWX3. When
using the ISQL program it is best to first change directories to a place where you can save
and retrieve session outputs to files. All data files were saved in a directory on RAVEN. The

command for setting the default directory to the TWX source directory is:
set def DUAI:/mroth.dharken.twx;

The directory is shown below:

Directory DUAL: [MROTH.DHARKEN. TWX]

ARTTACKE . SuL; 1 AG.DB:1 ASTRIKE.SQL; 2 AUG.SQL; 1
DIFAIMI LDAT L DIFATMI.SQL; 1 DIFAIMR.DAT; 1 DIFAIMR. SQL; 1

94

1 DIFCBUL.DAT; 1 DIFCBUL.SQL; :
: H DIFGB.DAT; 1 DIFGB.SQL; 1
3Q DIFGP2.DAT; 1 DIFGP2.5QL; !
301 DIFSPR.3QL;: 1 MAX_TON.SQL: 4
SOL;3 RD AC AL AB.DAT;2 RD _AC AL AB.SCL:S
ASE c : soL;2

A listing of what each file contains can be found by looking at the file README LIS

Thiz can be aecomplizhed by tvping:

type /pa readme s

The ISQL environment 1s executed by entering:

isql twx3

You can then create, load, aisplay, or output any legal SQL statement that uses data from
the TWX3 database. The outputs can be saved to a file which can then be transferred to
the microcomputer using the Xmodem communications protocol. The i=*tial command for
Jawuloading a file is:

xmodem filename

A secondary prompt then asks for the commanas w send the file ta the microcomouter. This

command is simply:

st filename

95

It is useful to think of the command st as “sent text.” Once data has been downloaded
to the microe~puter, it is formatted for use by Nexpert Object. This is discussed in the

progra uiner’s manual.

A3 Nexpert Files and Operations on the PC

The microcomputer environment consists of the following:

One Zemth 336 PC with 1 Meg of memory on the mother board, one 360K floppy disk

drive, and one 1.2M floppy disk drive

3 Megabytes of Expanded Memory

Zenith MS-13OS Version 3.30+

Microzoft Windows 386 Version 2.0

Logitech Mouse
e 80 Megabytes of hardisk space

e DEC LNO3R postscript printer

Nexpert Object runs under the windowing environment provided by Microsoft Windows.
The only changes necessary to Microsoft Windows is to add the following lines to the file,

win.int, in the windows directory:

kb=e:\nexpert\nexpert ".kb
frm=e:\nexpert\nexpert .frm
These commands, placed in the extension section, tell windows to execute nexpert
whenever files with the extensions " kb and “.frm are selected. The filename of the selecied
file will then be passed to Nexpert as a parameter, thus loading the knowledge base or input

form.

96

All Nexpert files can be found in the directory, e-\nexpert. It is important the your DOS
environmental variable, PATH, contain the Nexpert and Windows Directories. Otherwise you

will see numerous FILE NOT FOUND errors.

For each major section of this thesis, a unique knowledge base was created. These
knowledge bases can be found in their own directories on drive E. The following shows the

directory pathname and a brief description of the three knowledge bases:

o ¢ hharken: nxpfiles' strike - knowledge base for the automation of nuclear strike

aircraft replacement

o ¢: hharken nxpfiles beddown - knowledge base for the automation of aircraft hed-

down

e ¢: hharken . nxpfiles'log - knowiedge base for the automation of lomistics movemeiit

The directory contaming the strike aireraft replacement knowledge base is shown below:

S\STRIKE

§-29-89% 10:38a
8§-29-89 10:38a
8-28-89 12:25p
8-25-89 2:49p
§-24-89 2:48p
8-24-89 5:0%p
§-28-89 12:3%p
8-28-89 12:200
5-23-89 6:24p
8-04-85 4:19p
B-28-89 5:36p
8-24-89 2:47p
8-24-89 5:09p
8-28-89 12:39p
A 28-89 12:20p
8-23-8% f124p
8-23-83 G24p
8-04-89 4:19p
R-28-89 S:44p

REROLE FRM 1399 8-28-89 5:44¢
STR1KE FRM 1196 10-06-89 2:41p
STRIKE KB 10920 8-28-89 5:36p

22 File(s) 120832 bvtes free

DEMO.BAT is an executable batch file that runs windows and loads nexpert with the

input form that will start the knowledge session.

RESET.BAT is an executable batch file that resets the data files (*.DB) by copying the
* BAK files to their respective filenames, ie. AATTACK.BAK = AATTACK.DB. Before »unnng

the demo, RESET BAT should bz . xecuted first,

CONVERT.EXE is an executable ‘C’ program that takes reports generated by Nexpert
and wraps the cutput lines to 80 characters so they can be printed ¢n a dot-matcix printer.

The scurce code for this program is in CONVERT.C.

The *. DB files are the data files used by Nexpert Object. Theses files are in the Nevpert
Database format. The data files are read and updated during a knowledge session. The * BAK
files are used to reset the data after a xnowledge session has run. ASTRIKE.DP contains
data on the actual number of strike aircraft at an airbase. AATTACK. DB contains data on
the actual number of attack aircraft at an airbase. AUG.DB contains the type and number of
attack aircraft available at the augmentatic base. AUGM.DB and REROLE.DB are log files
that keep track of the type of aircraft and quantity of aircrat moved for the augmentation
base and rercled respectively. NXPDB.BAK is used to create these files before a session.

RSTRIKE DB is the number of strike aircraft required at an airbase.

The *.FRM files are the input forms used by Nexpert. These files are command
scripts that Nexpert compiles that can load and execute a knowledge base. These files
are also responsible for the display of session information to the user. STRIKF.FRM is
the file respons™le frr the loading and the execution of the knowledge base. REROLE FRM

displays the type and quantity of aircraft that are reroled on airbase. AUGM.FRM displays the

98

receiving airbase number, aircraft type, and quantity of aircraft moved from the augmentation

base.

STRIKE.KB is the ASCII file containing the knowledge base used by Nexpert Object.
This file can be ported to other hardware platforms running Nexpert and then successfully

loaeded on the new machine.

The directory containing the aircraft beddown knowledge base is shown below:

Volume in drive E is AFIT_ENG
Directory of E:\HHARKEN\NXPFILES\BEDDOWN

<DIR> 8-29-89 10:3%a
.. <DIR> 8-29-89 10:39%a
DEMO1 BAT 28 9-14-89 2:23p
DEMO2 BAT 28 9-14-89 2:23p
RESET BAT 117 9-11-89 3:39%
CONVERT EXE 9287 8-24-89 2:48r
ACALLOW BAK 7388 9-12-89 5:15p
AUGMBASE BAK 672 9-07~89 5:25p
NXPDB BAK 175 9-07-89 4:44p
ACALLOW LB 7388 9-12-89 5:15p
AUGMBASE DB 672 9-07-89 5:25p
AC_ON_AB DB 175 9-07-89 4:44p
BEDDOWN FRM 1551 9-06-89 4:5%p
STARTUP1 FRM 1241 10-0€¢-89 2:39p
STARTUPZ FRM 1241 10-06-89 2:40p
BEDDOWN1 KB 11688 9-14-89 2:22p
BEDDOWNZ2 KB 14722 9-14-89 2:03p

17 File(s) 120832 bytes free

DEMO!.BAT executes the demo for the knowledge base, BEDDOWN1. This knowledge
base beds down aircraft as quickly as possible. DEMQO2 BAT executes the demo for the
knowledge base, BEDDOWN2. This knowledge base beds down aircraft according to Red
regiment size requirements. DEMOI1.BAT and DEMO2.BAT executes STARTUP1.FRM and

STARTUP2.FRM respectively.

ACALLOW.DB contains data on aircraft types and the airbases where they are allowed to

he stationed. AUGMBASE.DB contain the type and quantity of aircraft at the augmentation

99

base that need to be moved. AC.ON_AB.DB is the log file that keeps track of aircraft

movement by recording the receiving base number, aircraft type and aircraft quantity.

STARTUP1.FRM loads and executes BEDDOWN1.KB and STARTUP2.FRM loads and
executes BEDDOWN2 KB. BEDDOWN.FRM is responsible for displaying the receiving air-

base number, type of aircraft, and quantity of aircraft sent frem the augmentation base.

The directory containing the logistics movement knowledge base is shown below:

Volume in drive E is AFIT_ENG
Directory of E:\HHARKEN\NXPFILES\LOG

<DIR> 9-15-89 3:56p
.. <DIR> 9-15-89 3:56p
DEMO BAT 27 9-25-89 2:15p
RESET BAT 483 9-20-89 8:04p
DIFATSM BAK 73 9-20-89 2:30p
DIFAIMI BAK 632 9-22-89 1:10p
DIFAIMR BAK 613 9-22-89 1:23p
DIFCBU1l BAK 433 9-20-89 2:32p
DIFCBU2 BAK 433 9-20-89 2:35p
DIFGB BAK 325 9-20~89 2:37p
DIFGP1 BAK 433 9-20-89 2:39p
DIFGP2 BAK 325 9-20-89 2:41p
DIFPOL BAK 141 9-20~89 8:12p
DIFSPR BAK 169 9-22-~-89 1:09p
TONNAGE BAK 365 9-22-89 1l:11p
WEIGHTS BAK 325 9-20-89 6:52p
NXPDB BAK 157 9-20-89 4:33p
BASE21 DB 468 9-22-89 4:43p
BASESS DB 312 9-22-89 4:42p
DIFAIMI DB 632 9-22-89 4:42p
DIFAIMR DB 613 9-22-89 4:43p
DIFATSM DB 73 9-20-89 2:30p
DIFCBUl DB 433 9-20-89 2:32p
DIFCBUZ2 DB 433 9-20-89 2:35p
DIFGB DB 325 9-20-89 2:37p
DIFGP1 DB 433 9-20-89 2:39p
DIFGP2 DB 325 9-20-89 2:41p
DIFPOL DB 141 9-22-89 4:42p
DIFSPR nB 169 9-22-89 4:43p
TONNAGE DB 365 9-22-89 4:43p
WEIGHTS DB 325 9-20-89 6:52p
STARTUP FRM 1241 10-06-89 2:40p
LOG KB 21319 9-25-89 2:28p

33 File(s) 122880 bytes free
100

—

DEMO.BAT is an executable batch file that has Nexpert compile STARTUP.FRM which

in turn loads and executes LOG.KB.

DIFF?222 DB are the data files that contain the difference between the existing quantity
of PMS and the required quantity, eg. DIFFCBU1.DB contains the differences for cluster
bomb units, type 1, for all airbases. A positive number depicts an overage while a negative
number shows a shortfall. BASE21.DB and BASE98.DB are log files listing the quantity of
supplies being moved from and returned to their respective bases. A negative quantity shows
supplies have been move to other bases. A positive quantity shows supplies have returned
from other bases. TONNAGE.DB contains the existing tonnage and maximum tonnage for

each airbase. WEIGHTS.DB contains the PMS name and weight for all legal supplies.

A4 Summary

To execute a knowledge session, simply change to the directory containing the knowledge
base desired, execute the command RESET, and enter the command, DEMO. This will
hopefully reward you with a successful run. If not it might be wise to make sure all the files

listed above are found in the correct directories.

101

Appendix B. Programmer’s Manual

B.1 [Introduction

This manual is not what one might expect after reading through those created for
procedural languages. Most programmer’s manuals are basically an application’s code that
has highly visible and readable comments. Unfortunately that is not the way the Neuron Data
Corporation envisioned it. All components of a Nexpert knowledge base are encapsulated
within a s'ngle ASCII file. However, this file was not created for the average programmer’s
reading pleasure. There are no facilities for the use of comments or indentation for legibility.
In other words, there are only two things that can use this file; the Nexpert System software

and a Neuron Data Corporation engineer.

Not all is lost; Neuron did provide a meager attempt at resolving this oversight by

allowing the user to print a Nexpert editor’s contents. These editors include:

the Class Editor

the Object Editor

the Rule Editor

the Context Editor

the Property Editor

In the IBM AT version that I used, there was no way to send the output to a file. Thus I had
to use a re-direction utility to send data destined for LPT1 into a MS-DOS file. Here I met
with another problem. This time it was with Microsoft Windows. Output to the printer was
sent in 256 character lines. You can imagine what this looked liked when printed on an 80
column CRT. To correct this I wrote a small C program that breaks lines every 79 characters

and adds a carriage return/linefeed. This worked quite nicely until you tried to understand

102

the contents of the files. I finally had to go and manually place line breaks and tabs within

the files to make them legible.

I believe that many of these problems arose from the early version of Nexpert that I
used. I am quite sure that most of aggravation I had will not be found once the Sun 386i
version of Nexpert is installed. However, you as a programmer will still need to take the
data files and manually indent and comment them so that another programmer can read and

hopefully understand what you have accomplished.

The next five sections deal with each editor in Nexpert and how I used them to document
my knowledge bases. The final section deals with the Forms Input Utility for controlling
knowledge base execution and output. In all these sections I use my knowledge base

responsible for nuclear strike aircraft replacement as an example.

B.2 The Class Editor

The class editor is the first utility used in creating a knowledge base. Here you create
the classes and subclasses needed for the transferring data between the database and the

knowledge base. The steps necessary for creating a class are as follows:
1. Start the class editor
2. Select the new class option from menu
3. Enter the class’s name
4. Enter subclasses (if any)
5. Enter properties
6. Select the save class option from menu

After the selecting the save class option, you will prompted for the actual type of each

property. The four types of properties used are numerical, string, boolean, and special. If

103

you make a mistake when entering property types you will have to delete the property from
the class and change the property type by calling up the property editor. If you name any
subclasses they will be automatically created with properties from the parent class. This

inheritance strategy can be changed, but I found no reason to do so.

By selecting the print option within the class editor and by redirecting the printer
output to a file, I was able to document the classes within the knowledge base. There is an
option to print the data to a file, but in the version I used, that particular function was not
implemented. After saving the file I then placed comments within the code using the syntax
for programs written in C. It should be noted that this file can never be used by the knowledge

base and if you need to make a change, the above procedures will have to be repeated.

Below is the file that I creatcd for the nuclear strike aircraft repl-~ement knowledge

base’s classes.

/***************t********k**

Name: Classes for the Nuclear Strike Aircraft Replacement KB
Author: Capt H. Dallas Harken

Date: 1 October 1989
Versioni: 1.C

Software: Nexpert (IBM AT) Version 1.0

Description: This file contains all knowledge base classes for the
nuclear strike aircraft replacement KB. Properties
and class relationships are also included.

This file was created using the PRINT option within
the Class Editor.

kk*k******k****************************i*****************************/

CLASSES:

airbase
PROPERTIES:
ab_id = (Numerical) /* Airbase Id Number */
CHILDREN:
stk _ac_on_ab
atk _ac on_ab

104

aircraft
PROPERTIES:
ac_name = (String) /* Aircraft Name, Eg. M21 */
ac_role = (String) /* BRircraft Role, Eg. A,C,S,etc */
CHILDREN:

stk_ac_on_ab
atk_ac_on_ab

atk_ac_on_a*

PROPERTIES:

ab_id = (Numerical) /* Airbase Id Number */

ac_name = {S*ring) /* Aircraft Name, Eg. M21 */

ac_role = (String) /* Aircraft Role, Eg. A,C,S,etc */

oct_quantity = (Numerical) /* Actual Quantity of Strike
Aircraft on Airbase */

atk_quantity = (Numerical) /* Actual Quantity oi Attack
Aircraft on Airbase */

aug_quantity = (Numerical) /* Actual Quantity of Attack

Aircraft of Same Type on
Augmentation base */

req_gquantity = (Numerical) /* Required Quancity oc Strike
Aircraft Needed on Airbase */
PARENTS:
airbase
aircraft

stk_ac_on_ab

ab_id = (Numerical) /* Airbase Id Number */

ac_name = (8tring) /* Aircraft Name, Eg. M21 */

ac_role = (String) /* Aircraft Role, Eg. A,C,S,etc */

act _quantity = (Numerical) /* Actual Quantity of Strike
Aircraft on Airbase */

req quantity = (Numerical) /* Required Quantity of Strike
Aircraft Needed on Airbase */

PARENTS:
airbase

aircraft

B.3 Rule Editor

The rule editor is the most complex utility in the Nexpert developmental environment.
This is due to the numerous tasks that can be accomplished. Thus the file created with this

editor is the longest and hardest to make legible. The general steps for creating a rule include

105

1. Start the rule editor

2. Select the new rule option from the display

(%]

Eater the rule’s hypothesis
4, Enter the rule’s condition(s)

5. Enter the rules’s actions(s)

(<2}

. Select the save rule option from menu

If you utilize any of the database options, another screen wiii prompt you for infortuation such
as database type and database/knowledge base conversion parameters. The database utility
screen allows you to choose from a list of available database formats. For this research I
used the Nexpert database format or NXPDB. One of the hardest things to understand when
first using the database window is how to match a database table and its attributes with a
knowledge base's class and its properties. A tuple in a relational database table maps to an

knowledge base object through the use of a name filter. This filter has the following format:

“root1”!field!“root2”!field2!

root1 and root2 are simple character strings that will be concatenated to the actual database
attributes that have the name field1 and field2. Let’s look at an example. Say you have the
database table, rd_airbase, with the attributes, ab_id and status. Knowing this, you create a
KB class called airbase and you give it the two properties, ab_id and status. Below is a table

with sample data.

abid | status
23 1.00
24 0.50
48 0.25
106

The quest " now is how do you get these two structures together. First you must note that
every object in a knowledge base must be unique. Thus you will need to use the ab_id as
a unique qualifier. However you can not have an object that starts with a number. (This
is not explained in the Nexpert manual.) In order to overcome this small problem you
use the root strings to make the objects more understandable. You then create the name
filter, “ab”!ab_id!, and link the objects to the KB class aircraft. Database attributes are then
transferred by mapping them to KB properties. The final result of the transfer is the creation
of 3 objects within the KB class aircraft. The names of those three object are ab23, ab24, and

ab48. For more information look at the Database Links Chapter in the Nexpert manual.

The print to file option for the rule editor does work! After downloading the rules to a
file, I then added enough tabs and comments to help other understand what each rule was
responsible for in the knowledge base. The actual description of the keywords within the
rules can be found in the Rules and Database Links chapters of the Nexpert manual. The

following is the rules section of the nuclear strike aircrafi replacement knowledge base.

/k**********************1\-***
Name: Rules for the Nuclear Strike Aircraft Replacement KB
Author: Capt H. Dallas Harken
Date: 1 October 1989
Version: 1.0
Software: Nexpert (IBM AT) Version 1.0
Description: This file contains all knowledge base rule for the
nuclear strike aircraft replacement KB. The format

1S:

If
CONDITION(S)

Then HYPOTHESIS
1s confirmed.

ACTION(S)

This file was created using the SAVE TO FILE option

107

within the Rule Editor.

X*kkk**i*t**i*i**k*****k******************************t*****k***t****/

RULES:

/k*k**************k**x*************************************k**********

Hypothesis:

Conditions:

Actions:

bring atk_ac_from aug ab_all

This rule is fired if
1.

The required number of strike aircraft is greater
than the actual number or aircrafi on the airbase
The number of attack aircraft at the airbase is 0
The retrieval of the actual number of attack
aircraft at the augmentation base is successful

The number of needed attack aircraft cannot be
completely satisfied by the aircraft located at the
augmentation base

The number of attack aircraft at the augmentation
base 1s greater than 0

Assign ab_id to temporary object, augm temp

Assign ac_name to temp. object, augm_temp

Set number of attack aircraft left on augmentation
base to 0

Update Database (see Metaslot for object, augm temp)
Reset Rule for Re-Rolling Aircraft

NUTE: Attack and strike aircraft must be of the same type,
eg. M21A <--> M21§

t***************k**/

Rule 1

If

And

And

And

And

Then

Anri
Arnd
And
And
And
And

<atk_ac_on_ab>.atk_quantity+(<atk_ac_on_ab>.act guantity-
<atk_ac _on_ab>.req_quantity) is less than 0.00
<latk_ac_on_ab|>.atk_quantity is precisely equal to 0.00
Retrieve aug.db @NXPDB;@NAME="ab "'!ab id!;@PROPS=auy_ quantity;
@FIELDS=quantity; @ATOMS=<|atk_ac_on_ab|>.aug_quantity;
<atk_ac_on_ab>.aug_quantity+(<atk_ac_on_ab>.act quantity-
<atk_ac_on_ab>.req quantity) is less than 0.00
<latk_ac _on _ab|>.aug quantity 1s greater than 0.00

bring_atk_ac_from aug _ab all
is confirmed.

aug_all flag is set to TRUE

<latk_ac_on_abi>.ab id 1Is assigned to augm_temp.id
<}atk_ac_on_ab|>.ac_name is assigned to augm_temp.ac

0 is assigned to augm _temp.left
<jatk_ac_on_ab|>.aug_quantity is assigned to augm temp.diff
Reset rerole_atk _ac from same base all

108

And Reset rercle atk _ac from same base_some

/x*thtk*k*tﬂnﬁ*k*k*xﬂ****k*t**t*t**k****‘k*t***‘k******‘k*****‘k***‘k*****

Hypothesis: bring_atk_ac from aug_ab_some

Conditions: This rule is fired if
1. The required number of strike aircraft is greater
than the actual number of aircraft on the airbase
The number of attack aircraft at the airbase 1s 0
3. The retrieval of the actual number of attack
aircraft at the augmentation base 1is successful
4. The number of needed attack aircraft can be
completely satisfied by the aircraft located at the
augmentation base

V]

Actions: Assign ab id to temporary oobject, augm temp

Assign ac_name to temp. object, augm_temp

Set number of attack aircraft left on augmentation
base ©o quantity available - quantity needed

Update Database (see Metaslot for object, augm temp)
Reset Rule for Re-Rolling Aircraft

W Bt =

ey

w

NCTE: Aztack and strike aircraft must be of the same type,
eg. M21A <--> M21S

ttkttkt:tt*t!'kkktk*ﬂkki*xtkkt*kt‘k***.***‘k*tk*kk!’t*‘k*t*k**kxﬁiﬂtik**ix/'

<atk_ac_on_ab>.atk quantity+(<atk_ac_on_ab>.act guantity-
<atk_ac_on_ab>.req quantity) is less than 0.00

And <latk_ac_on_abi>.atk_quantity 1s precisely equal to 0.00

And Retrieve aug.db @NXPDB;@NAME="ab "!'ab 1d!;@PROPS=aug quantity;
@FIELDS=quantity;(@ATOMS=<|atk ac_on_abl|>.aug_guantity;

And <atk_ac_on_ab>.aug quantity+(<atk_ac_on_ab>.act_quautity-
<atk_ac_on_ab>.req quantity) is greater than or egqual to 0.00

Then bring atk ac from aug_ab_some
15 confirmed.

And aug_all flag is set to FALSE

And <latk_ac_on_abl>.ab id is assigned to augm temp.id

And <fatk_ac_on_abl[>.ac_name 1is assigned to augm_temp.ac

And <atk_ac_on_ab>.aug_quantity-abs(<atk_ac_on_ab>.act quantity-
<atk_ac on_ab>.req quantity) is assigned to augm temp.left

And abs(<atk_ac_or_zk>.2ct_quantity-<atk_ac_on_ab>.req quantaity)
15 assigned to augm temp.diff

Andd Reset rerole atk_ac_from same base all

frnd Beset rerole atk ac from same base some

I R N N N R T RN E SRR R RS R N A I I o

tiypothesis: data loaded

100

Conditions: This rule is fired 1if

1. The retrieval of the required strike aircraft data
1s successful

2. The retrieval of the actual strike aircraft data

138 successful

@]

Actions: None (See Rule Contexts)
*nntt*t*t*xtt*k*t*ktt**A'A'k****k****xtk********************ﬁ"****i*ﬁﬁ*/

3
>.db @NXPDB; @ADD;@NAME="ab "'!ab id!;
1 _abl;@PROPS=ab_id,ac _name,ac_role, reg_quantity:
_name,ac_role,quantity;
RS Adb E@NXPDB;@NAME="ab "'!ab 1d!;@PROPS=act_ quantity;
; 3ATOMS=<|stk ac_on abl>.act quantity;
Thor e d
Sk X R R X kR X kR A AR AL L AR R kR Rk ok kokk kA AR Ak ok ok k ok ok kA Ak ok ok ok ok ok ok k ok ok ok ok ok kRok ok ok ok ok ok ko kK
ve o thesis: 1ow_on stk ac
it 1nns This rule 1s fired 1f
1. The actual number of strike atrcraft 13 less than the
requ: red number
ATl 3 L. Rertrieve the actual number cf attack aircraft on the
1:rhase of the came type as the strike aircraft
2. Firre rules responsible for re-roling aircraft
NPRS o of cnject or property
omparison only numeric
values, e
3 < b 15 1llegal
(a by < 2 13 legal

n..-0-t'~.o0’bttﬂGnﬂntdtﬂ'*:*ﬁt**#t****t#tktﬁ*k*t*ﬁﬁ‘i*tﬁ*’ﬁtﬁﬁﬁt*'“/"

5te o noabielact quantity-<stk ac on_ab>.req quantity
v ~ /‘r».
3o o whan U005
Toe LW T o

ol Treare Snosest <stkoac o onoabi»> jatk _ac on_abl
i roaatrack . ib ANXPDB: BNAME="ab_ "'ab id!:

110

@PROPS=atk_quantity;@FIELDS=quantity; @ATOMS=
<jlatk_ac_on_abl>.atk_quantity;

And rerole atk _ac_from same_base_all is assigned to
rerole_atk_ac_from same base_all

And rerole atk ac from same base_some 1s assigned to
rerole_atk_ac_from same_base_some

/**k***t*k*ktk***t************'k********k****************tk*t*x**t*x*tk

Hypothesis: rercle_atk_ac from_aug_ab_all

Conditions: This rule is fired if
1. The required number of strike aircraft is greater

than the actual number of aircraft on the airbase

. The numb=ar of needed attack aircraft cannot be
completely satisfied by the aircraft located at the
airbase base

3. The number of attack aircraft at the airbase

base 1s greater than 0

O

Let KB know all attack aircrart on airbase
are being re-roled
2. Assign ab_id to temporary object, res temp
3. Assign ac_name to temp. object, res temp
4., Set number of attack aircraft left on airktuse
base to O
5. Update Databkase (see Metaslot for object, res terp)

b
(@]
1
Fa
O
o)
[¥2]
[

NOTE: Attack and strike ailrcraft must ke of the same type,
2g. M21A <--> M21S

KAk kkhkhkkhkkARkAkkkAkkhkhkA XAk kA A AAAAKA A A A A ki kA Ak Rk khkk kb x d kb kb ok d kk khwokvdwwr /

Rule 5
If
<atk_ac_on_ab>.act_quantity-<atk ac on_ab>.req quantity
15 less than 0.00
And <atk_ac_on_ab>.atk guantityt{<atk_ac_on_ab>.act quant:ity-
<atk_ac_on_ab>.req_quantityj 1s less than 0.00
And <jatk _ac _on_ab|>.atk qguartity 1s greater than (.00

Then rerole atk _ac_from _same base all

13 confirmed,

Arad rersle_all flag 1s set to TRUE

Andd <iatk_ac_con_abl>.ab_id 15 assigned to res temp.id

Andl <patk_ac _on_abl>.ac_name 1s assigned to res temp.ac

Arcd G o1s assigned to res_tenp.left

Anci <lark _ac on_abl>.atk_quantitv 1s assigred to zos temp . ditf

A R AN S R S SRR RS RN RS SRR N NE AR I R R N R A A I

rercle atk ac from aug ab all

Co

nditions: This rule is fired if

1.

Actions: 1.

The required number of strike aircraft is greater
than the actual number of aircraft on the airbase
The number of needed attack aircraft can be
completely satisfied by the aircraft located at the
airbase bkase

Let KB know not all attack aircraft on airbase

are being re-roled

Assign ab_id to tempor:ry object, res_temp

Assign ac_name to temp. object, res_temp

Set number of attack aircraft left on airbase

base to quantity available - quantity needed
Update Database (see Metaslot for object, res_temp)

NOTE: Attack and strike aircraft must be of the same type,

eqg.

x****k******************k***********************#*********‘k*********t/

Rule 6

It

And

The
is

And
And
And
And

And

M21A <--> M21S

<atk_ac_on_ab>.act_quantity-<atk_ ac_on_ab>.req quantity

1s less thana 0.00
<atk_ac_on_ab>.atk_quantity+(<atk_ac_on ab>.act quantity-
<atk_ac_cn_ab>.req _quantity) is greater than or equal to 0.00

n rerole_atk ac_from_ same base some

confirmed.

rerole_all flag is set to FALSE

<latk_ac_on_abl>.ac_name is assigned to rec_temp.ac
<latk_ac_on_abl>.ab_id is assigned to res_temp.id
<atk_ac_or_ab>.atk_quantity-abs(<atk_ac_on_ab>.act_quantity-
<atk_ac_on_ab>.req quantity) is assigned to res_ temp.left
abs (<atk_ac_on_ab>.act_quantity-<atk_ac_on_ab>.req quantity)
1s assigned to res_temp.diff

B.4 The Object Editor

Most objects are created dynamically when reading data from the database. Howeve., therc
are a few objects such as flags and holding areas that can be entered by hand. The procedure
for creating objects is exactly like that of creating classes. You should note that the hypothesis

of a rule is also an object but it is constructed automatically by the rule editor. The principal

The manual creation of objects is not generally needed when creating a knowledge base.

112

reason for using the object editor is that it allows you to add, delete, and modify the “order of

sources” and “if change” actions of the objects. These actions are known as metaslots.

‘The “order of sources” action for an object allows you to determine an object’s property
values at anytime during a knowledge sessicn. The most valuable action used is InitValue.
This action assigns a value to the cbject during the startup of a knowledge session. The
action RunlimeValue provides a means of changing an objects values while in the middle of
knowledge session. By setting the value of an object to unknown (using the reset command),
the RunTimeValue will be assigned to that object if it is ever evaluated by the inference

engine,

The “if change” actions is another means of controlling the knowledge session outside of
a rule’s action set. One or more commands can be executed by simply changing the value of
an object. This is most commonly implemented by creating a boolean object and changing its
value from false to true. Actions associated with this metaslot are executed in the order in

which they were entered.

" ou must also use the object editor to change the inference category of a hypothesis. The
use of inference categories was explained in my knowledge base design chapters. The default
inference category for a hypothesis is one. Increasing this number increases a rules priority

within the inference engine.

Below is the output from the object editor usiug the print option:

/**k**kkt**k*t******t************k*************‘k*k****‘k******t*****i**

Name: OCbjects for the Nuclear Strike Aircraft Replacement KB
Author: Capt H. Dallas Harken

Date: 1 October 1989
Version: 1.0

Software: Nexpert (IBM AT) Version 1.0

Dascription: This file contains al) KB objects, including the
hypotheses for each rule. Special attention should

113

be given to the ORDER OF SQURCES, IF CHANGES ACTIONS,
and INFERENCE CATEGORY sections of each object. If
these section do not exist assume the default values
are used.

NOTE: aug_temp and res_temp are the key objects used
in updating the database.

This file was created using the PRINT option
within the Rule Editor.

*kktt***********k‘k***‘k****‘k***‘k*******‘k**************‘k*************‘k**/

OBJECTS:
aug_all flag /* Boolean Flag for determining
1f all planes at augmentation
base are moved */
PROPERTIES:
Value = (Booclean)
augm_ remp /* Cbject responsible for updating
augmentation base inventory and
aircraft movement log file */
PROPERTIES:
ac = (String)
diff = (MNumerical)

ORDER OF SOURCES:
InitvValue 0.000000
RunTimeValue 0.000000
IF CHANGE ACTIONS:

Do augm temp.left "ab_"\augm temp.id\.aug quantity

Do augm_temp.diff "ab_"\augm temp.id\.atk guantity

CreateObject \augm_temp.ac\ Jatk_ac on_ab]

DeleteObject \augm temp.ac\ |atk _ac_on_ab]

Do augm_temp.left \augm temp.ac\.aug quantity

Write aug.db @NXPDB;(@NAME='ac rame!;@PROPS=aug quantity;
@FIELDS=quantity;

DeleteObject \augm temp.ac)\

Write augm.db @NXPDB;@ADD;@NAME=!ab id!;@PROPS=id,ac,diff;
@FIELDS=ab 1d, ac_name,quantity;@ATOMS=augm_ temp

Do abs("ab_"\augm_temp.id\.act quantity+"ab "
Vaugm_temp.id\.atk quantity-"ab "\augm temp.
req_quantity) augm_temp.left

Execute augm.frm @FRM; @WAIT;

Reset augm_temp.diff

Reset bring atk_ac from aug ab some

id = Unknown (Numerical)

left = Unknown {Numerical)
Bring atk _ac from aug ab_all /* Hypothesis */
PRUPERTIES:

114

Value = (Boolean)
bring atk_ac_from aug_ab some /* Hypothesis */
PROPERTIES:
value = (Boolean)
data_loaded /* Hypothesis */
PROPERTIES:
Value = (Boolean)
low_on_stk_ac /* Hypothesis */
PROPERTIES:
Value = (Boolean)
rerole_all flag /* Hypothesis */
PROPERTIES:
Value = (Boolean)
rerole atk_ac_from same_ base_all /* Hypothesis */
PROPERTIES:
Value = (Boolean)

INFERENCE CATEGORY: 3

rerole_atk_ac_from same_base_some /* Hypothesis */
PROPERTIES:
Value = (Boolean)

INFERENCE CATEGORY: 3

res_temp

/* Object responsible for updating
airbase inventory and
aircraft re-role log file */

PROPERTIES:

ac =
diff

Unknown (String)

0.00 (Numerical)

ORDER OF SOURCES:

IF

InitValue 0.000000

RunTimeValue 0.000000

CHANGE ACTIONS:

Do res_temp.left "ab "\res_temp.id\.atk quantity

Do "ab_"\res_temp.id\.act_quantity+res_temp.dif
"ab_"\res_temp.id\.act_quantity

Write astrike.db @NXPDB;@NAME="ab_"!ab_id!;@PROPS=
act_quantity;@FIELDS=guantity; @ATOMS="ab_"

\res temp.id\

Write aattack.db @NXPDB;@NAME="ab_"!ab_id!;@PROPS=
atk_quantity;@FIELDS=quantity; @ATOMS="ab_ "
\res_temp.id\

Write rerole.db @NXPDB;@ADD;@NAME=!ab id!;@PROPS
=id,ac,diff;@FIELDS=ab_id, ac_name,quantity;
@ATOMS=res_temp

Do abs({"ab_ "\res temp.id\.act_quantity-"ab "

115

\res_temp.id\.req_quantity)res_ temp.left
Execute rerole.frm @FRM;@WAIT;
Reset res_temp.diff
Reset rerole_atk_ac_ from same_base_some
id = Unknown (Numerical)
left = Unknown (Numerical)

B.5 The Context Editor

The context editor is responsible for determining which rules will be investigated by the
inference engine after the current rule is evaluated. Using the Propagate When True (PWT)
strategy any rule placed in context with the current rule will be placed on the system’s agenda

if and only if the current rule’s hypothesis evaluates to true.

The context editor modifies the relationship between rules by linking their respective
hypotheses together. The editor lists a rule’s hypothesis and then allows you to add or delete
other hypotheses to the on shown. It is possible to place a rule in context with itself. This
allows you to create a “loop” within your knowledge base, and can be used to find the largest

or smallest value of numerous objects within a class.

Once again you have to use the print option within the editor to get a hardcopy of
your data. The following are the contexts used in the nuclear strike aircraft replacement

knowledge base.

/k*****k***********k***************‘k***x******‘k************‘k**********
Name: Rule Contexts for the Nuclear Strike Aircraft
Replacement KB
Author: Capt H. Dallas Harken
Date: 1 October 1989
Version: 1.0

Software: Nexpert (IBM AT) Version 1.0
Description: This file contains the rule contexts for the nuclear
strike aircraft replacement knowledge base. The top

most hypothesis is assumed to be that of the current
rule. Thus all indented hypotheses below it are those

116

in context with the current rule.

Those rules with no hypotheses directly below them have
no contextual relationships.

This file was created using the PRINT option

within the Context Editor.
*********‘k*‘k******‘k***‘k/

CONTEXTS:

bring_atk ac from aug ab_all

bring_atk ac_from aug_ab_all

rerole atk_ac_from_same base_all

rerole atk ac_from same base_ some

bring_atk_ac_from aug ab_some

bring atk_ac_from aug_ab_ some
rerole_atk_ac_from same_base_all

rercle_atk _ac_from same base_ some

data_loaded
low_on_stk_ac

low_on_stk_ac
rerole atk_ac_from same_ base_all

rerole atk_ac_from_same_base_some

B.6 The Property Editor

The property editor is rarely used since property types are automatically asked for when
a property is created through the use of the other editors. However if you need to change the

property type this editor is as functional as the rest.

The property editor also provides a means for printing all properties and their types.

This function is not really necessary since the output from the object and class editors also

117

show these properties and types. Below is the output of the property editor provided for the

sake of completeness.

/*t******************t**
Name: Object Properties for the Nuclear Strike Aircraft
Replacement KB
Author: Capt H. Dallas Harken
Date: 1 October 1989
Version: 1.0
Software: Nexpert (IBM AT) Version 1.0
Description: This file contains the object properties and their types
for the nuclear strike aircraft replacement knowledge
base. These values can also be found in the Object
and Class files.

This file was created using the PRINT option

within the Property Editor.
k*xkk****k****k**/

PRCPERTIES: /* Descriptions can be found in the Object and Class
Files */

ab 1d (Numerical)
ac_name (String)

ac_role (String)

act _guantity (Numerical)
atk_guantity (Numerical)
aug_quantity (Numerical)
d1ff (Numerical)

1d (Numerical)

left (Numerical)

req _quantity (Numerical)

Jalue (Special) /* Default Value for Hypotheses */

118

B.7 The Forms Input Utility

The forms input utility allows users to control a knowledge session the use of a command
script. This seript can prompt the user, load the knowledge base, start the knowledge base by
suggesting a hypothesis, and report the actions of the inference engine to the user’s screen.
This is as close to a procedural language as Nexpert gets. It even provides a means for
commenting your command files; but it has been removed from later versions due to
conflicts with the runtime version of the knowledge bases. Since I used version 1.0
of Nexpert I was able to make use of this utility. I used the command scripts to start the
knowledge session and report aircraft movement and re-roling operations. An alternative
solution for future efforts might be to make use of Nexpert’s external interface with procedural
languages such as C or Fortran. This would allow the programmer to tailor the delivery

environment to the user’s specific requirements,

The report forms for the knowledge bases are displayed by using the execute command
within a riules action set or an object’s “if change” metaslot. See the Nexpert manual for more

details.

The form below is used to start the nuclear strike aircraft replacement knowledge base.

{THIS IS A COMMENT}

Ak hkhkhkhkkhkhkhkhkhhkhkhkkhhkkhkhkhkhkhkhkkkhkhkhrhkhkh bk khhkkhkrhAhhkhhkhkhkhkhkhkhkkkkhkhkkkkxkk

{

(Filename: strike.frm

{ Author: Capt H. Dallas Harken
{ Ver/Date: 1.0/3 Aug 1989
{
{
{
{

Description: Startup form for Nuclear Strike Aircraft Replacement

Knowledge Base
Ak kkkkhkhhk khhkkhkFrhkhrr bk bk hkhhkkxhAkAkrkhhkhkhkhkkkhhkhkkirhkhkhkhkidhkhkkkhkhkkkkuhkikkhkxk

}
I
}
}
}
}
}
}
fevaluation (OFF)

#toggle(Transcript) { Turn cff Transcript Window }
#r =p ()

#cao>tion{Maintain Strike Alrcraft)

#remove_scroll ()

119

#remcve menu ()

#fontsize{"24,0")

#fontcolor ("RED")

#ctext ("AIl Demonstration for Maintaining Nuclear Strike Aircraft")
#blankspace ("LINES_1")

#fontsize("12,8")

#fontcolor ("BLACK")

#ltext ("The following Demo will demonstrate the use of the *b[Nexpert]")
#ltext ("*b[Expert System Shell] for maintaining the correct number of")
#ltext ("nuclear strike aircraft at specified bases.™)

#blankspace ("LINES_2")

#ctext ("Click on START to continue."™) {Use Mouse}

#blankspace ("LINES 1")

#button ("START", OK, CENTER)

{ The Real Work Begins Here)}

#loadkb(strike.kb) { Load Knowledge Base }
#suggest (data_ loaded)
#knowcess () { Start Knowledge Session }

This second form reports aircraft re-roling operations.

k**}

{

{ File: rerole.frm)
{ Author: Capt Dallas Harken }
{ Ver/Date: 1.0/3 Aug 89 }
{ Description: This is a report form used to show aircraft re-roling 1}
{ operations }
{k*************k********k***)

#evaluation (ON)
#remove_menu ()
#remove scroll ()
#caption{rerole.frm)
#beep ()

#if (rercle_all flag == False) { Flag Set by Know!edge Base }

#fontcolor ("RED")

#fontsize("24,0")

#ctext ("Re-role All Aircraft From Same Base')

#blankspace ("LINES_2")

#fontcolor ("BLACK")

#fontsize("12,8")

#ltext ("Attack Aircraft on the following base are being re-roled")
#ltext ("to Nuclear Strike Aircraft. The total number of aircraft"™)
#ltext ("needed will be re-roled.”)

120

#blankspace ("LINES_2")

#ltext (" AirBase Iv: \res temp.id\")

#ltext (" AirCraft Name: \res_temp.ac\")}

#ltext (" Number of Aircraft Re-roled: \res temp.diff\")

felse

#fontcoloxr ("RED")

#fontsize ("24,0")

fctext ("Re-role Some Aircraft From The Same Base")

#¥blankspace ("LINES_2")

#fontcolor ("BLACK")

#fontsize("12,8")

#ltext ("Atrtack Aircraft on the following base are being re-roled")
#ltext ("to Nuclear Strike Aircraft. The total number of aircraft")
#ltext ("needed exceeds the number of attack aircraft available on base.")
#ltext ("The difference will be brought in from the augmentation base.')
#blankspace ("LINES_2")

#ltext (" AirBase ID: \res temp.id\")

#ltext (" AirCraft Name: \res_temp.ac\")

#ltext (" Number of Aircraft Re-roled: \res temp.diff\")

#ltext (" Number of Aircraft Still Needed: \res temp.left\")

#endif

#blankspace ("LINES_2")

#button ("Continue", 0K, CENTER) { Use Mouse }
#evaluation (OFF)
#knoweess () { Continue Knowledge Session }

The final form in the nuclear strike aircraft replacement knowledge base reports aircraft

movements.

{*kﬁ***k******}
{ File: augm.frm }
{ Author: Capt Dallas Harken }
{ Ver/Date: 1.0/3 Aug 89 }
{ Description: This is a report form used to show aircraft movement }
{ }
{ }

operations
ok ok ok ok ok ok ok ko ok ok ok ke ks ko ok kA ke kb ek ok A e A ok b sk sk ok sk sk sk gk ok e o e ok ok ok ok b Sk ok e ot gk ke ke ok ok ok ok ok ok ke ek ok Kk

#evaluation (ON)
#remove menu ()
#remove scroll()
#caption{mvaug. frm)
#beep ()

121

#1f (aug_all flag == False) { Flag Set By Knowledge Base)

#fontcolor ("RED")

#fontsize("<4,9")

#crext ("dove ALl Aircraft From Augmentation Base")

#blankspace ("LINES_2")

#fontcolor ("BLACK")

#fontsize("12,8")

#ltext ("Attack Aircraft from the Augmentation base are being trans-")
#ltext ("ferred to the following base for rerole to Nuclear Strike")
#ltext ("Aircraft. The total number of aircraft needed will be")
#ltext ("transferred.")

#blankspace ("LINES 2")

#ltext (" AirBase ID: \augm temp.id\")

#ltext (" AirCraft Name: \augm temp.ac\")

#ltext (" Number of Alrcraft Moved: \augm temp.diff\")

#elsc

#fontcolor ("RED")

#fontsize("24,0")

#ctext ("Move Some Aircraft From Augmentation Base")

#blankspace ("LINES_2")

#fontcolor ("BLACK")

#fontsize("12,8")

#ltext ("Attack Aircraft from the Augmentation base are being trans-")
#ltext ("terred to the following base for rerole to Nuclear Strike")
#ltext ("Alrcraft. The total number of aircraft needed exceeds the")
#1rext ("number of aircraft available at the augmentation base.")
#ltext ("The difference will have to be brought in from other bases.")
#blankspace ("LINES_2")

#ltext (" AirBase ID: \augm_temp.id\")

#ltext (" AirCraft Name: \augm_temp.ac\")

#ltext (" Number of Aircraft Moved: \augm temp.diff\")

#lrext (" Number of Aircraft Still Needed: \augm temp.left\"}

#endif

#blankspace ("LINES 2")

#button("Continue”,OK, CENTER) { Use Mouse }

#tevaluation (OFF)

#knowcess () { Continue Knowledge Session }
B.8 Summary

There not much left to say for documenting a knowledge base’s code. My final recom-

mendation however is, if you have any questions, Look it up in the manual! Good-Luck.

122

Bibliography

. Astrahan, M.P, Blasgen, M.W., Chamberlain, D.D., Eswaren, J.N., and others “System

R: Relational Approach to Database Management,” ACM Transactions on Database
Systems 1,97-137 (1976).

. Barr, A. and Feigenbaum, E.A.; Eds. The Handbook of Artificial Intelligence, Morgan

Kaufmann Publishers, Inc., Vol 1: 1981.

Brachman, R.J., Gilbert, V.P.,, and Levesque, H.T. “An Essential Hybrid Reasoning
System: Knowledge and Symbol Level Accounts of Krypton,” Artificial Intelligence and
Databases, Morgan Kaufmann Publishers Inc., 293-300 (1989).

4. Boar, Bernard H. Application Prototyping. John Wiley & Sons, New York, 1984.
5. Bodie, M.L. and Mylopoulos, J.; Eds. On Knowledge Base Management Systems, Springer-

=3

Verlag New York Inc., 1986.

Brooks, Capt Michael. Developing a Database Managemeni System and Air Simulation
Software for a Theater War Exercise (ADA189681). Master’s thesis, School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1987.
AFIT/GCS/ENG/87D-6.

Brodie, M.L. “Future Intelligent Information Systems: Al and Database Technologies
Working Together,” Artificial Inte’'igence and Databases, Morgan Kaufmann Publishers,
Inc., 1989.

8. Carr, Michael A. and others Building Knowledge Systems, McGraw-Hill, 1989.
9. Korth, H.F. and Silberschatz, A. Database System Concepts, McGraw-Hill, 1986.

10.

11.

12.

13.

15.

16.

17.

Kross, Capt Mark S. Developing New User Interfaces for the Theater War Exercise
fADA189744). Master’s thesis, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, December 1987. AFIT/GCS/ENG/87D-19.

Levesque, H.J. and Brachman, R.J. “Knowledge Level Interfaces to Information Sys-
tems,” On Knowledge Base Management Systems, Springer-Verlag New York Inc., 13-34
{1986).

Manola, F. and Brodie M. L. “On Knowledge-Based System Architectures,” On Knowledge
Base Management Systems, Springer-Verlag New York Inc., 35-54 (1986).

Mylopoulos, J. and Brodie, M.; Eds. Artificial Intelligence and Databases, Morgan
Kaufmann Publishers, Inc., 1989,

. Napheys, B. and Herkimer, D. “A Look at Loosely-Coupled Database Systems,” Proceed-

ing of the Second International Conference on Expert Database Systems, 107-115 (April
1988).

Neuron Data Inc. Nexpert Object Fundamentals, Palo Alte, CA, Version 1.0 (IBM-AT),
1988.

Quick, Capt Darrell A. Adding Map-Based Graphics to the Theater War Exercise
(ADA205902). Master’s thesis, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB, OH, December 1988. AFIT/GCS/ENG/88D-16.

Kkoussopoulos, N. and Mylopoulos J. “Using Semantic Networks for Database Man-
agement,” Artificial Intelligence and Databases, Morgan Kaufmann Publishers, Inc.,
112-137 (1989).

123

. Shortliffe, E.H. Computer-Based Medical Consultations: MYCIN, Elsevier New York,

1976.

. Somsel, J. “NEXPERT Object and Humble: Object-Based Shells,” Al Expert, Nov 1987.
. Tanimoto, S.L. The Elements of Artificial Intelligence, Computer Science Press, 1987.
. Turing, A. M. “Computing Machinery and Intelligence,” Computers and Thought, McGraw

Hill, 11-35 (1963).

2. Theater Warfare Exercise Handbook. Air Force Wargaming Center, Maxwell AFB, AL,

1988. Unpublished Manual.

3. TWX Soviet/ Warsaw Pact: Operation Red Lightning. Air Force Air War College, Maxwell

AFB, AL, 1988.

. Van Horn, Michael Understanding Expert Systems. Bantam Books, 1986.

Department of Defense. [JSAF CoS Constant Readiness Tasking. DOD Directive, Item 6.
Washington: Government Printing Office, 4 August 1976.

Wilcox, Capt Kenneth R. Extending the User Interface for The Theater War Exercise
tADAZ02726). Master’s thesis, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB, OH, December 1988. AFIT/GCS/ENG/88D-24,

124

Vita

Captain Harold “Dallas” Harken 111 was born on 8 April 1963 at Travis Air Force Base,
California, to Mr. and Mrs H. D. Harken, Jr. He graduated with honors from Middleton High
School in 1981, He then attended Clemson University on an Air Force ROTC scholurship and
received a Bachelor of Science in Computer Engineering in 1985. Following graduation, 2Lt
Harken was assigned to the 7th Communications Group at the Pentagon, where he served as
a UNIX system administrator and programmer. In 1988 he was accepted by the Air Force
Institute of Technology as a masters student in the School of Engineering. Afler graduation
in December (1989), Capt Harken will be assigned to the Air Force Wargaming Center at

Maxwell AFB, Alabama.

Permanent address: 1433 Birthright Street
Charleston, South Carolina
29407

125

[

+ UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188
la REPORT secumrv CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCTMESIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
’prroved for pulrlic relecse;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distril:ution unlimitcd
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)]
SIS OCE /NG /B89 -
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
- (If licable
Trtocl of 'mgincering F\.I-‘(I ’?%WP)
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Ccde)

77r Torce Inctitute of Technology
t.‘l'iq}.tt—.n ‘terson AT, P 45433-G59

3a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Ty Yoree Targaming Contoer) AUCADPT/UG
8(ADDRESS (Clty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Cawee L] ", L 30112-5532 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO

11. TITLE (Include Security Classification)

S Drpert System for hAutomating Muclear Strike 2ircraft Peplacement,
Focddown, and Togistics Yovement for the Theater Werfare i

12 PERSONAL AUTHOR(S)

Parold Iy, larkern 111, P.5., Captain, UCPT

i ircroft
corciaoe (U \(‘*1/‘”’ HRANEER |

'3a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15 PAGE COUNT
O Vlesic FROM T0 1989 LCeceomber 136

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

12 5 Wargaming, Fxpert Cystems, Databasce, Trototyping

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis MMvyuvisor: rarl: M. toth, Major, 'GP

Associate profossor of Copputer Systons

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
,ﬁ . UNCTASSTIIrD
O unceassirieomunumiten 7F same as rer J oTIC USERS
*2a NAME OF RESPONSIBLE INDIVIDUAL 225 TELEPHONE (include Area Code) [22¢ OFF'CE SYMBOL
Cark S Potli, UMajor, UOAE {512) 255-35706 AT /TN
DD fForm 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

_

UNCLASSIEIED

The Theater War Exercise (TWX) is a five day, two sided, theater level, air-power emplioyment decision
making exercise. The decisions required are typical of those that an air component conunander and stadl
would make. TWX is a two-sided game where the blue team is played by a student seminar and the red
tern is played by one or more dedicated Air Foree Wargaming Center personnel who attemypt to provide a
realistic red opponent.

Personnel at the Air Force Wargaming Center determined that too much time was required for a red
plaver toorender an elleetive game. Also noted was the divergent backgronnd of the red players miade it
Jutivad to play anormialized ganie during, multiple seminars. The goal of this thesis was to evaluate existing
software programs, determine which would best serve as a platform for automating the red player, design a
sistem to that effect, and inplement it

It was determined that an integration of artificial intelligence and relational database management syvs-
tems would provide a flexible, innovative, and cost-effective approach for automation. Nexpert Objeet, an
cxpert system shell by Neuron Data, was chosen as the software platform,

An ohjcet-onented approach was used to determine the necessary structures for automating the planning
seetion of TWXL This included the replacement of nuclear strike aircraft, the beddown of aireralt from an
auginentation base, and the resolntion of logistic shortfalls at each arrbase due to attrition and movement of
areraft

Fhe ereation of three knowledge bases resulted from the design phase using application prototyping,
which facilitated the need for constant changes to the rules in order to present a system that acted in
aceordance with the desire of the red players. This new series of programs provided a means of lessening
tHhie ied player’s time involved with simplistic, but time-consiming work and anowed them to iuacrease then

tine o the seetions dealing with target selection and prioritization.

[CNCLASSLIELED

